Patents by Inventor Neil Collings

Neil Collings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180188532
    Abstract: There is provided a display system comprising a data provider, a spatial light modulator and a second cylindrical lens. The data provider is arranged to provide holographic data comprising first data corresponding to a first cylindrical lens having optical power in a first direction. The spatial light modulator is arranged to receive the holographic data, wherein the spatial light modulator is arranged to spatially-modulate received light in accordance with the holographic data. The second cylindrical lens is arranged to receive spatially-modulated light from the spatial light modulator and perform a one-dimensional Fourier transform of the received light in a second direction orthogonal to the first direction.
    Type: Application
    Filed: March 3, 2017
    Publication date: July 5, 2018
    Applicant: Dualitas Ltd.
    Inventors: Jamieson CHRISTMAS, Neil COLLINGS
  • Patent number: 10007234
    Abstract: Provided is an optically addressable spatial light modulator (OASLM)-based holographic display and a method of operating the same. The display includes an addressing unit including a light source unit emitting a plurality of recording beams, a driving mirror array including driving mirrors that each reflect a recording beam incident thereon, and a mirror member array including mirror members that each obliquely reflect a recording beam incident thereon, in which each of the driving mirrors corresponds to one of the mirror members. The recording beams, which are transmitted by the addressing unit, are focused onto the OASLM by micro lenses of a lenslet array. The OASLM is optically addressed by the recording beams focused by the micro lenses of the lenslet array and thus modulates and diffracts a reproduction beam, incident thereon from a reproduction beam providing unit, and thus a holographic image is reproduced.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: June 26, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Hong-seok Lee, Hoon Song, Kang-hee Won, Neil Collings, Daping Chu
  • Patent number: 9930431
    Abstract: This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on Liquid Crystal on Silicon devices. At least one optical input to receives an input beam. A plurality of optical outputs and a spatial light modulator (SLM) on an optical path between said optical input and said optical outputs are provided, and a driver for said SLM to display a kinoform on said SLM diffracts said input beam into an output beam comprising a plurality of diffraction orders, wherein a routed one of said diffraction orders is directed to at least one selected said optical output; said apparatus is configured to modify a wavefront of said output beam to reduce a coupling of said output beam into said selected optical output; and said kinoform is adapted to compensate for said wavefront modification to compensate for said reduced coupling.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: March 27, 2018
    Assignee: Cambridge Enterprise Limited
    Inventors: Daping Chu, Neil Collings, William Crossland, Maura Michelle Redmond, Brian Robertson
  • Publication number: 20170315507
    Abstract: A LCOS routing device, comprising: an optical input and plurality of optical outputs; a spatial light modulator (SLM) between said input and output, for displaying a kinoform; a data processor, configured to provide kinoform data for displaying said kinoform on said SLM. Said data processor inputs routing and calculates said kinoform data. Said data processor calculates kinoform data by: determining an initial phase pattern for said kinoform; calculating a replay field of said phase pattern; modifying an amplitude component of said replay field, retaining a phase component of said replay field to provide an updated replay field; performing a space-frequency transform on said updated replay field to determine an updated phase pattern for said kinoform; and repeating said calculating and updating of said replay field and said performing of said space-frequency transform until said kinoform for display is determined; and outputting said kinoform data for display on said LCOS SLM.
    Type: Application
    Filed: December 19, 2016
    Publication date: November 2, 2017
    Inventors: Neil Collings, Andreas Georgiou, Maura Michelle Redmond, Brian Robertson, Jinsong Liu, William Crossland, John Richard Moore, Daping Chu
  • Patent number: 9774930
    Abstract: We describe methods and devices for manipulating optical signals. A method of manipulating an optical signal comprises providing a device (100) comprising a layer (106) of blue phase liquid crystal in the path of the optical signal; and applying a dynamically varying spatial pattern of voltages across the layer (106) of blue phase liquid crystal, thereby causing the refractive index of the layer (106) of blue phase liquid crystal to vary according the dynamically varying spatial pattern.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 26, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Daping Chu, Neil Collings, John Richard Moore, Mykhaylo Pivnenko, Brian Robertson
  • Patent number: 9547276
    Abstract: We describe a LCOS (liquid crystal on silicon) telecommunications light beam routing device, the device comprising: an optical input; a plurality of optical outputs; a LCOS spatial light modulator (SLM) in an optical path between said input and said output, for displaying a kinoform; a data processor, coupled to said SLM, configured to provide kinoform data for displaying said kinoform on said SLM; wherein said kinoform data defines a kinoform which routes a beam from said optical input to a selected said optical output; wherein said data processor is configured to input routing data defining said selected optical output and to calculate said kinoform data for routing said beam responsive to said routing data; and wherein said data processor is configured to calculate said kinoform data by: determining an initial phase pattern for said kinoform; calculating a replay field of said phase pattern; modifying an amplitude component of said replay field to represent a target replay field for said beam routing, reta
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: January 17, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Neil Collings, Andreas Georgiou, Marua Michelle Redmond, Brian Robertson, Jinsong Liu, William Crossland, John Richard Moore, Daping Chu
  • Publication number: 20160301994
    Abstract: This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on Liquid Crystal on Silicon devices. At least one optical input to receives an input beam. A plurality of optical outputs and a spatial light modulator (SLM) on an optical path between said optical input and said optical outputs are provided, and a driver for said SLM to display a kinoform on said SLM diffracts said input beam into an output beam comprising a plurality of diffraction orders, wherein a routed one of said diffraction orders is directed to at least one selected said optical output; said apparatus is configured to modify a wavefront of said output beam to reduce a coupling of said output beam into said selected optical output; and said kinoform is adapted to compensate for said wavefront modification to compensate for said reduced coupling.
    Type: Application
    Filed: June 6, 2016
    Publication date: October 13, 2016
    Applicant: Cambridge Enterprise Limited
    Inventors: Daping Chu, Neil Collings, William Crossland, Maura Michelle Redmond, Brian Robertson
  • Patent number: 9363582
    Abstract: This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on LCOS (Liquid Crystal on Silicon) devices.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 7, 2016
    Assignee: Cambridge Enterprise Limited
    Inventors: Daping Chu, Neil Collings, William Crossland, Maura Michelle Redmond, Brian Robertson
  • Patent number: 9354604
    Abstract: Provided are an optically addressable spatial light modulator (OASLM) divided into a plurality of segments, and an apparatus and method for displaying a holographic three-dimensional (3D) image using the OASLM. The holographic 3D image display apparatus includes a first light source which emits a write beam, an electric addressable spatial light modulator (EASLM) which modulates the write beam emitted from the first light source according to hologram information regarding a 3D image, a second light source which emits a read beam, an OASLM which receives the write beam modulated by the EASLM and modulates the read beam emitted from the second light source according to hologram information included in the modulated write beam, a scanning optical unit which projects the write beam modulated by the EASLM onto the OASLM, and a Fourier lens which focuses the read beam modulated by the OASLM onto a predetermined space to form the 3D image.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: May 31, 2016
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Hong-seok Lee, Neil Collings, Daping Chu, Hoon Song, William Alden Crossland, Jhen Si Chen
  • Patent number: 9274400
    Abstract: The invention relates to optical beam steering. There is described an optical beam steering apparatus, comprising: a splitter arranged to split an optical beam into at least a first part having a first polarization and a second part having a second polarization, said first and second polarizations being substantially mutually orthogonal; a first liquid crystal device region arranged to receive said first part and to have director orientation substantially aligned to said first polarization; and a second liquid crystal device region arranged to receive said second part and to have director orientation substantially aligned to said second polarization.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 1, 2016
    Assignee: Cambridge Enterprise Limited, University of Cambridge
    Inventors: Neil Collings, William Crossland, Maura Michelle Redmond, John Richard Moore, David Nugent, Brian Robertson
  • Publication number: 20150286187
    Abstract: We describe a LCOS (liquid crystal on silicon) telecommunications light beam routing device, the device comprising: an optical input; a plurality of optical outputs; a LCOS spatial light modulator (SLM) in an optical path between said input and said output, for displaying a kinoform; a data processor, coupled to said SLM, configured to provide kinoform data for displaying said kinoform on said SLM; wherein said kinoform data defines a kinoform which routes a beam from said optical input to a selected said optical output; wherein said data processor is configured to input routing data defining said selected optical output and to calculate said kinoform data for routing said beam responsive to said routing data; and wherein said data processor is configured to calculate said kinoform data by: determining an initial phase pattern for said kinoform; calculating a replay field of said phase pattern; modifying an amplitude component of said replay field to represent a target replay field for said beam routing, reta
    Type: Application
    Filed: February 15, 2012
    Publication date: October 8, 2015
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Neil Collings, Andreas Georgiou, Marua Michelle Redmond, Brian Robertson, Jinsong Liu, William Crossland, John Richard Moore, Daping Chu
  • Publication number: 20140375763
    Abstract: Provided is an optically addressable spatial light modulator (OASLM)-based holographic display and a method of operating the same. The display includes an addressing unit including a light source unit emitting a plurality of recording beams, a driving mirror array including driving mirrors that each reflect a recording beam incident thereon, and a mirror member array including mirror members that each obliquely reflect a recording beam incident thereon, in which each of the driving mirrors corresponds to one of the mirror members. The recording beams, which are transmitted by the addressing unit, are focused onto the OASLM by micro lenses of a lenslet array. The OASLM is optically addressed by the recording beams focused by the micro lenses of the lenslet array and thus modulates and diffracts a reproduction beam, incident thereon from a reproduction beam providing unit, and thus a holographic image is reproduced.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 25, 2014
    Applicants: SAMSUNG ELECTRONICS CO., LTD., CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Hong-seok LEE, Hoon SONG, Kang-hee WON, Neil COLLINGS, Daping CHU
  • Publication number: 20140363162
    Abstract: We describe methods and devices for manipulating optical signals. A method of manipulating an optical signal comprises providing a device (100) comprising a layer (106) of blue phase liquid crystal in the path of the optical signal; and applying a dynamically varying spatial pattern of voltages across the layer (106) of blue phase liquid crystal, thereby causing the refractive index of the layer (106) of blue phase liquid crystal to vary according the dynamically varying spatial pattern.
    Type: Application
    Filed: January 23, 2013
    Publication date: December 11, 2014
    Inventors: Daping Chu, Neil Collings, John Richard Moore, Mykhaylo Pivnenko, Brian Robertson
  • Publication number: 20140355985
    Abstract: This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on LCOS (Liquid Crystal on Silicon) devices.
    Type: Application
    Filed: March 7, 2012
    Publication date: December 4, 2014
    Inventors: Daping Chu, Neil Collings, William Crossland, Maura Michelle Redmond, Brian Robertson
  • Patent number: 8878759
    Abstract: A method of displaying a video image comprises receiving sequential image frames at a processor. Each image frame is processed to obtain a kinoform. A programmable diffractive element such as an SLM represents the sequence of kinoforms allowing reproduction of the image using a suitable illumination beam.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: November 4, 2014
    Assignee: Cambridge Enterprise Limited
    Inventors: William Crossland, Neil Collings, Edward Buckley, Adrian Cable, Nicholas Lawrence, Peter Mash, Timothy Wilkinson
  • Publication number: 20140118806
    Abstract: A method of displaying a video image comprises receiving sequential image frames at a processor. Each image frame is processed to obtain a kinoform. A programmable diffractive element such as an SLM represents the sequence of kinoforms allowing reproduction of the image using a suitable illumination beam.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: Cambridge Enterprise Limited
    Inventors: William Crossland, Neil Collings, Edward Buckley, Adrian Cable, Nicholas Lawrence, Peter Mash, Timothy Wilkinson
  • Publication number: 20140104664
    Abstract: Provided are an optically addressable spatial light modulator (OASLM) divided into a plurality of segments, and an apparatus and method for displaying a holographic three-dimensional (3D) image using the OASLM. The holographic 3D image display apparatus includes a first light source which emits a write beam, an electric addressable spatial light modulator (EASLM) which modulates the write beam emitted from the first light source according to hologram information regarding a 3D image, a second light source which emits a read beam, an OASLM which receives the write beam modulated by the EASLM and modulates the read beam emitted from the second light source according to hologram information included in the modulated write beam, a scanning optical unit which projects the write beam modulated by the EASLM onto the OASLM, and a Fourier lens which focuses the read beam modulated by the OASLM onto a predetermined space to form the 3D image.
    Type: Application
    Filed: April 8, 2013
    Publication date: April 17, 2014
    Applicants: CAMBRIDGE ENTERPRISE LIMITED, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hong-seok LEE, Neil COLLINGS, Daping CHU, Hoon SONG, William Alden CROSSLAND, Jhen Si CHEN
  • Patent number: 8654048
    Abstract: A method of displaying a video image comprises receiving sequential image frames at a processor. Each image frame is processed to obtain a kinoform. A programmable diffractive element such as an SLM represents the sequence of kinoforms allowing reproduction of the image using a suitable illumination beam.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: February 18, 2014
    Assignee: Cambridge Enterprise Limited
    Inventors: Neil Collings, Timothy Wilkinson, William Crossland, Edward Buckley, Adrian Cable, Nicholas Lawrence, Peter Mash
  • Patent number: 8159733
    Abstract: A method of forming an image comprising providing a device for imparting respective phase shifts to different regions of an incident wavefront, wherein the phase shifts give rise to an image in a replay field, and causing zero-order light to be focused into a region between the replay field and the device.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 17, 2012
    Assignee: Cambridge Enterprise Limited
    Inventors: Jamieson Christmas, Neil Collings, Andreas Georgiou
  • Publication number: 20110280573
    Abstract: This invention generally relates to an optical beam steering apparatus and a method of manufacturing an optical beam steering apparatus, and more particularly to an optical add drop multiplexer (OADM) such as a reconfigurable OADM (ROADM) comprising the optical beam steering apparatus. In one embodiment, the apparatus comprises a slab and a plurality of optical elements in or on a first surface of said slab, the plurality of optical elements including at least one liquid crystal on silicon element, the apparatus being arranged such that at least one optical beam can propagate freely in the slab from one of said plurality of optical elements to another one of said plurality of optical elements via a reflection from a second surface of the optical beam steering apparatus.
    Type: Application
    Filed: November 13, 2009
    Publication date: November 17, 2011
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Neil Collings, William Crossland, Maura Michelle Redmond, David Nugent, Brian Robertson