Patents by Inventor Neil E. J. Hunt

Neil E. J. Hunt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5550089
    Abstract: An optoelectronic lII-V or II-VI semiconductor device comprises a thin film coating with optical characteristics providing low midgap interface state density. A field effect device for inversion channel applications on III-V semiconductors also comprises a thin dielectric film providing required interface characteristics. The thin film is also applicable to passivation of states on exposed surfaces of electronic III-V devices. The thin film comprises a uniform, homogeneous, dense, stoichiometric gallium oxide (Ga.sub.2 O.sub.3) dielectric thin film, fabricated by electron-beam evaporation of a single crystal, high purity Gd.sub.3 Ga.sub.5 O.sub.12 complex compound on semiconductor substrates kept at temperatures ranging from 40.degree. to 370.degree. C. and at background pressures at or above 1.times.10.sup.-10 Torr.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: August 27, 1996
    Assignee: Lucent Technologies Inc.
    Inventors: Niloy K. Dutta, Russell J. Fischer, Neil E. J. Hunt, Matthias Passlack, Erdmann F. Schubert, George J. Zydzik
  • Patent number: 5451548
    Abstract: Disclosed is a method of fabricating a stoichiometric gallium oxide (Ga.sub.2 O.sub.3) thin film with dielectric properties on at least a portion of a semiconducting, insulating or metallic substrate. The method comprises electron-beam evaporation of single crystal, high purity Gd.sub.3 Ga.sub.5 O.sub.12 complex compound combining relatively ionic oxide, such as Gd.sub.2 O.sub.3, with the more covalent oxide Ga.sub.2 O.sub.3 such as to deposit a uniform, homogeneous, dense Ga.sub.2 O.sub.3 thin film with dielectric properties on a variety of said substrates, the semiconducting substrates including III-V and II-VI compound semiconductors.
    Type: Grant
    Filed: March 23, 1994
    Date of Patent: September 19, 1995
    Assignee: AT&T Corp.
    Inventors: Neil E. J. Hunt, Matthias Passlack, Erdmann F. Schubert, George J. Zydzik
  • Patent number: 5362977
    Abstract: This invention embodies single mirror light-emitting diodes (LEDs) with enhanced intensity. The LEDs are Group III-V and/or II-IV compound semiconductor structures with a single metallic mirror. The enhanced intensity is obtained by placing an active region of the LED having from two to ten, preferably from four to eight, quantum wells at an anti-node of the optical node of the device created by a nearby metallic mirror. Such multiquantum well LED structures exhibit enhanced efficiencies approaching that of a perfect isotropic emitter.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: November 8, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Neil E. J. Hunt, Erdmann F. Schubert
  • Patent number: 5363398
    Abstract: Absorption properties of an optically active medium can be changed drastically by a Fabry-Perot microcavity. Optically active medium of the cavity includes a host material which is not optically active and at least one rare earth ion which provides optical activity to the medium. The Fabry-Perot cavity is designed to be resonant with excitation wavelength of an absorption band of the host material. The excitation is provided by a source of radiation positioned such that the radiation impinges on the cavity at an angle within a range of from zero to less than 90 degrees from the normal to the top surface of the cavity. In one embodiment Er-implanted SiO.sub.2 is used as the optically active medium. SiO.sub.2 :Er has an absorption band at 980 nm and an emission band at 1.55 .mu.m due to 4f intra-atomic transitions of Er.sup.3+ ions. The Fabry-Perot cavity is designed to be resonant with the 980 nm absorption band of SiO.sub.2 :Er.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: November 8, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Alastair M. Glass, Neil E. J. Hunt, John M. Poate, Erdmann F. Schubert, George J. Zydzik
  • Patent number: 5315128
    Abstract: Described is a resonant-cavity p-i-n photodetector based on the reflection or transmission through a Fabry-Perot cavity incorporating non-epitaxial, amorphous layers with alternating refractive index difference which layers are electron-beam deposited on a light-gathering side of a commercially available photodetector. The materials of the Fabry-Perot cavity are selectable from materials, refractive indices of which fall within a large range (from n=1.26 for CaF.sub.2 to n=3.5 for Si) preferably from materials which are depositable in an amorphous state. The material combinations are selected so that only wavelengths resonant with the cavity mode will be detected. The microcavity of the RC-PIN design can also be deposited on any existing detector structure, without modification of semiconductor growth. Such a photodetector would be useful for wavelength de-multiplexing applications.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: May 24, 1994
    Assignee: AT&T Bell Laboratories
    Inventors: Neil E. J. Hunt, Erdmann F. Schubert, George J. Zydzik
  • Patent number: 5249195
    Abstract: This invention embodies an optical device with a Fabry-Perot cavity formed by two reflective mirrors and an active layer which is doped with a rare earth element selected from lanthanide series elements with number 57 through 71. The thickness of the active layer being a whole number multiple of .lambda./2 wherein .lambda. is the operating, or emissive, wavelength of the device, said whole number being one of the numbers ranging from 1 to 5, the fundamental mode of the cavity being in resonance with the emission wavelength of said selected rare earth element. Cavity-quality factors exceeding Q=300 and finesses of 73 are achieved with structures consisting of two Si/SiO.sub.2 distributed Bragg reflector (DBR) mirrors and an Er-implanted (.lambda./2) SiO.sub.2 active region. The bottom DBR mirror consists of four pairs and the upper DBR mirror consists of two-and-a half pairs of quarterwave (.lambda./4) layers of Si and SiO.sub.2.
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: September 28, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: Leonard C. Feldman, Neil E. J. Hunt, Dale C. Jacobson, John M. Poate, Erdmann F. Schubert, Arjen M. Vredenberg, Yiu-Huen Wong, George J. Zydzik