Patents by Inventor Neil Ebejer

Neil Ebejer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719668
    Abstract: Presented herein are systems, methods, and architectures related to functionalization of the metallic gates of field-effect transistors (FETs) and the use of the functionalized FETs as biochemical sensors in liquid samples. The functionalization can either be a molecularly imprinted polymer or a probe material. The functionalized FETs can be used in devices for analyte detection/quantification. In particular, the functionalized FETs are used in devices for the detection and/or quantification of cytokines (e.g. interleukin) and/or cholesterol (LDL or HDL).
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 8, 2023
    Assignee: Xsensio SA
    Inventors: Johan Frédéric Longo, Neil Ebejer, Hoël Maxime Guérin, Fabien Patrick Wildhaber
  • Patent number: 11712181
    Abstract: Presented herein are systems, methods for collecting fluid from a surface (e.g., skin) and analyzing the fluid (e.g., to measure chemical, physical and/or biological properties of the fluid). For example, a system for fluid collection on a surface (e.g., skin) and fluid analysis includes at least one of the following modules: (i) a collection and delivery module to collect a fluid over a wet or partially wet surface and deliver it to (ii) a main sensing module to perform chemical, physical and/or biological analysis on the fluid. The system also includes (iii) a flow regulation module, for controlling fluid flow (e.g., transport) through the system and (iv) a waste module to collect and/or dispose of the fluid after analysis is complete.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 1, 2023
    Assignee: Xsensio SA
    Inventors: Fabien Patrick Wildhaber, Neil Ebejer, Hoël Maxime Guérin, Johan Frédéric Longo
  • Publication number: 20210364466
    Abstract: Presented herein are systems, methods, and architectures related to functionalization of the metallic gates of field-effect transistors (FETs) and the use of the functionalized FETs as biochemical sensors in liquid samples. The functionalization can either be a molecularly imprinted polymer or a probe material. The functionalized FETs can be used in devices for analyte detection/quantification. In particular, the functionalized FETs are used in devices for the detection and/or quantification of cytokines (e.g. interleukin) and/or cholesterol (LDL or HDL).
    Type: Application
    Filed: March 6, 2019
    Publication date: November 25, 2021
    Inventors: Johan Frédéric Longo, Neil Ebejer, Hoël Maxime Guérin, Fabien Patrick Wildhaber
  • Patent number: 11161115
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 11161114
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 10980448
    Abstract: A sensor device, such as a biosensor, may comprise a polymer substrate, which is structured so as to form sets of microneedles and respective vias. The microneedles extend, each, from a base surface of the substrate. Each of the vias extends through a thickness of the substrate, thereby forming a corresponding set of apertures on the base surface. Each of the apertures is adjacent to a respective one of the microneedles. The device further may comprise two or more electrodes, these including a sensing electrode and a reference electrode. Each electrode may comprise an electrically conductive material layer that coats a region of the substrate, so as to coat at least some of the microneedles and neighboring portions of said base surface. Related devices, apparatuses, and methods of fabrication and use of such devices may be provided.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: April 20, 2021
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Ute Drechsler, Patrick Ruch
  • Publication number: 20210106259
    Abstract: A sensor device, such as a biosensor, may comprise a polymer substrate, which is structured so as to form sets of microneedles and respective vias. The microneedles extend, each, from a base surface of the substrate. Each of the vias extends through a thickness of the substrate, thereby forming a corresponding set of apertures on the base surface. Each of the apertures is adjacent to a respective one of the microneedles. The device further may comprise two or more electrodes, these including a sensing electrode and a reference electrode. Each electrode may comprise an electrically conductive material layer that coats a region of the substrate, so as to coat at least some of the microneedles and neighboring portions of said base surface. Related devices, apparatuses, and methods of fabrication and use of such devices may be provided.
    Type: Application
    Filed: December 23, 2020
    Publication date: April 15, 2021
    Inventors: Neil Ebejer, Ute Drechsler, Patrick Ruch
  • Publication number: 20200397352
    Abstract: Presented herein are systems, methods for collecting fluid from a surface (e.g., skin) and analyzing the fluid (e.g., to measure chemical, physical and/or biological properties of the fluid). For example, a system for fluid collection on a surface (e.g., skin) and fluid analysis includes at least one of the following modules: (i) a collection and delivery module to collect a fluid over a wet or partially wet surface and deliver it to (ii) a main sensing module to perform chemical, physical and/or biological analysis on the fluid. The system also includes (iii) a flow regulation module, for controlling fluid flow (e.g., transport) through the system and (iv) a waste module to collect and/or dispose of the fluid after analysis is complete.
    Type: Application
    Filed: March 6, 2019
    Publication date: December 24, 2020
    Inventors: Fabien Patrick Wildhaber, Neil Ebejer, Hoël Maxime Guérin, Johan Frédéric Longo
  • Patent number: 10553891
    Abstract: The present invention is notably directed to a flow cell device. The device comprises: an exchange membrane, extending essentially in a plane; an adhesive, at a periphery of the membrane; and two half-cells, each on a respective side of said plane, the half-cells sandwiching the membrane. The membrane spans a smaller area than each of the areas of the half-cells, whereby a peripheral space is defined at the periphery of the membrane between two opposing faces of the half-cells. This space is at least partly filled with an adhesive, so as to secure the two half-cells to each other with the membrane encapsulated therein. The present invention is further directed to a method of fabrication of such a flow cell device.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 10532356
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: January 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Publication number: 20190350500
    Abstract: A sensor device, such as a biosensor, may comprise a polymer substrate, which is structured so as to form sets of microneedles and respective vias. The microneedles extend, each, from a base surface of the substrate. Each of the vias extends through a thickness of the substrate, thereby forming a corresponding set of apertures on the base surface. Each of the apertures is adjacent to a respective one of the microneedles. The device further may comprise two or more electrodes, these including a sensing electrode and a reference electrode. Each electrode may comprise an electrically conductive material layer that coats a region of the substrate, so as to coat at least some of the microneedles and neighboring portions of said base surface. Related devices, apparatuses, and methods of fabrication and use of such devices may be provided.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 21, 2019
    Inventors: Neil Ebejer, Ute Drechsler, Patrick Ruch
  • Publication number: 20190336977
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 7, 2019
    Inventors: Neil Ebejer, Patrick Ruch
  • Publication number: 20190336976
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Application
    Filed: July 2, 2019
    Publication date: November 7, 2019
    Inventors: Neil Ebejer, Patrick Ruch
  • Publication number: 20190134632
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Neil Ebejer, Patrick Ruch
  • Publication number: 20180241064
    Abstract: The present invention is notably directed to a flow cell device. The device comprises: an exchange membrane, extending essentially in a plane; an adhesive, at a periphery of the membrane; and two half-cells, each on a respective side of said plane, the half-cells sandwiching the membrane. The membrane spans a smaller area than each of the areas of the half-cells, whereby a peripheral space is defined at the periphery of the membrane between two opposing faces of the half-cells. This space is at least partly filled with an adhesive, so as to secure the two half-cells to each other with the membrane encapsulated therein. The present invention is further directed to a method of fabrication of such a flow cell device.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Neil Ebejer, Patrick Ruch
  • Publication number: 20180241066
    Abstract: The present invention is directed to a method of fabricating a flow cell device. The device comprises: an exchange membrane, extending essentially in a plane; an adhesive, at a periphery of the membrane; and two half-cells, each on a respective side of said plane, the half-cells sandwiching the membrane. The membrane spans a smaller area than each of the areas of the half-cells, whereby a peripheral space is defined at the periphery of the membrane between two opposing faces of the half-cells. This space is at least partly filled with an adhesive, so as to secure the two half-cells to each other with the membrane encapsulated therein.
    Type: Application
    Filed: November 10, 2017
    Publication date: August 23, 2018
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 9316613
    Abstract: Apparatus comprises a pipet comprising first and second channels separated by a septum and having a tip at which each of the first and second channels is open; an electrolyte solution contained within both the first and second channels of the pipet; a first electrode extending into the electrolyte in the first channel of the pipet; a second electrode extending into the electrolyte in the second channel of the pipet; means for applying a potential difference between the first and second electrodes; means for measuring alternating current components of a current flowing to or from the first electrode; means for applying an oscillatory perturbation to the pipet; and means responsive to the alternating current measured to be flowing to or from the first electrode to adjust a position of the pipet such as to control a separation between the tip of the pipet and a surface of interest.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 19, 2016
    Assignee: The University of Warwick
    Inventors: Patrick Unwin, Neil Ebejer
  • Publication number: 20130140191
    Abstract: Apparatus comprises a pipet comprising first and second channels separated by a septum and having a tip at which each of the first and second channels is open; an electrolyte solution contained within both the first and second channels of the pipet; a first electrode extending into the electrolyte in the first channel of the pipet; a second electrode extending into the electrolyte in the second channel of the pipet; means for applying a potential difference between the first and second electrodes; means for measuring alternating current components of a current flowing to or from the first electrode; means for applying an oscillatory perturbation to the pipet; and means responsive to the alternating current measured to be flowing to or from the first electrode to adjust a position of the pipet such as to control a separation between the tip of the pipet and a surface of interest.
    Type: Application
    Filed: August 11, 2011
    Publication date: June 6, 2013
    Inventors: Patrick Unwin, Neil Ebejer