Patents by Inventor Neil F. Hoehle
Neil F. Hoehle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250052324Abstract: An illustrative embodiment of a shaft seal assembly generally includes a fixed stator, a floating stator, and a sealing member. In the illustrative embodiment the fixed stator may be formed with one or more fluid conduits that are in fluid communication with one or fluid conduits formed in the floating stator. The fluid conduits in the floating stator may be in fluid communication with one or more fluid conduits formed in a sealing member. A rotational interface may exist between the sealing member and a shaft, and the various fluid conduits may be configured to create a fluid barrier at that interface. Other embodiments of a shaft seal assembly may create a fluid barrier at a rotational interface between a rotor and a floating stator.Type: ApplicationFiled: October 31, 2024Publication date: February 13, 2025Inventors: Neil F. Hoehle, Tom Horner
-
Patent number: 12163590Abstract: An illustrative embodiment of a shaft seal assembly generally includes a fixed stator, a floating stator, and a sealing member. In the illustrative embodiment the fixed stator may be formed with one or more fluid conduits that are in fluid communication with one or fluid conduits formed in the floating stator. The fluid conduits in the floating stator may be in fluid communication with one or more fluid conduits formed in a sealing member. A rotational interface may exist between the sealing member and a shaft, and the various fluid conduits may be configured to create a fluid barrier at that interface. Other embodiments of a shaft seal assembly may create a fluid barrier at a rotational interface between a rotor and a floating stator.Type: GrantFiled: May 22, 2020Date of Patent: December 10, 2024Assignee: Inpro/Seal LLCInventors: Neil F. Hoehle, Tom Horner
-
Publication number: 20240353006Abstract: An illustrative embodiment of a shaft seal assembly generally includes a first stator, a second stator, and a throttle member. In one illustrative embodiment, the second stator may be formed with a main body and an access plate positioned radially interior with respect to a portion of the first stator. The first stator and second stator may engage one another about a semi-spherical interface comprised of a convex surface on the second stator and a concave surface on the first stator. The second stator may include an internal channel in which a throttle member may be positioned, wherein a radially interior surface of the throttle member may be positioned a shaft.Type: ApplicationFiled: April 30, 2024Publication date: October 24, 2024Inventors: Neil F. Hoehle, Chandhini Gowthaman
-
Patent number: 12000484Abstract: An illustrative embodiment of a shaft seal assembly generally includes a first stator, a second stator, and a throttle member. In one illustrative embodiment, the second stator may be formed with a main body and an access plate positioned radially interior with respect to a portion of the first stator. The first stator and second stator may engage one another about a semi-spherical interface comprised of a convex surface on the second stator and a concave surface on the first stator. The second stator may include an internal channel in which a throttle member may be positioned, wherein a radially interior surface of the throttle member may be positioned a shaft.Type: GrantFiled: December 30, 2022Date of Patent: June 4, 2024Assignee: Inpro/Seal LLCInventors: Neil F. Hoehle, Chandhini Gowthaman
-
Publication number: 20230213096Abstract: An illustrative embodiment of a shaft seal assembly generally includes a first stator, a second stator, and a throttle member. In one illustrative embodiment, the second stator may be formed with a main body and an access plate positioned radially interior with respect to a portion of the first stator. The first stator and second stator may engage one another about a semi-spherical interface comprised of a convex surface on the second stator and a concave surface on the first stator. The second stator may include an internal channel in which a throttle member may be positioned, wherein a radially interior surface of the throttle member may be positioned a shaft.Type: ApplicationFiled: December 30, 2022Publication date: July 6, 2023Inventors: Neil F. Hoehle, Chandhini Gowthaman
-
Patent number: 11543031Abstract: An illustrative embodiment of a shaft seal assembly generally includes a first stator, a second stator, and a throttle member. In one illustrative embodiment, the second stator may be formed with a main body and an access plate positioned radially interior with respect to a portion of the first stator. The first stator and second stator may engage one another about a semi-spherical interface comprised of a convex surface on the second stator and a concave surface on the first stator. The second stator may include an internal channel in which a throttle member may be positioned, wherein a radially interior surface of the throttle member may be positioned a shaft.Type: GrantFiled: September 30, 2019Date of Patent: January 3, 2023Assignee: Inpro/Seal LLCInventors: Neil F. Hoehle, Chandhini Gowthaman
-
Publication number: 20210172530Abstract: A shaft seal assembly comprises a stator configured to engage a housing and a rotor positioned within the stator. The stator may include a main body, a stator inward radial projection extending radially inward from the stator main body, and a collection groove adjacent the stator inward radial projection. The rotor may include a rotor main body and a rotor axial projection extending from the rotor main body. The rotor axial projection may be positioned adjacent a distal end of the stator inward radial projection.Type: ApplicationFiled: February 22, 2021Publication date: June 10, 2021Inventors: Neil F. Hoehle, Chintan Shah
-
Patent number: 11002362Abstract: A shaft seal assembly may include a stator and a rotor. The rotor may be configured to rotate with a shaft, and the stator may be engaged with a housing. The stator and rotor may be configured with radial and/or axial recesses and/or radial and/or axial projections. These various features may be configured such that the stator and rotor cooperate to form a ring cavity. A cooperating ring may be positioned in the ring cavity, and the cooperating ring may be configured such that is circumferentially expandable so that the cooperating ring changes size and/or shape when it rotates as opposed to when it is not rotating.Type: GrantFiled: February 11, 2019Date of Patent: May 11, 2021Assignee: Inpro/Seal LLCInventor: Neil F. Hoehle
-
Patent number: 10927961Abstract: A shaft seal assembly comprises a stator configured to engage a housing and a rotor positioned within the stator. The stator may include a main body, a stator inward radial projection extending radially inward from the stator main body, and a collection groove adjacent the stator inward radial projection. The rotor may include a rotor main body and a rotor axial projection extending from the rotor main body. The rotor axial projection may be positioned adjacent a distal end of the stator inward radial projection.Type: GrantFiled: November 1, 2017Date of Patent: February 23, 2021Assignee: Inpro/Seal LLCInventors: Neil F. Hoehle, Chintan Shah
-
Publication number: 20200284352Abstract: An illustrative embodiment of a shaft seal assembly generally includes a fixed stator, a floating stator, and a sealing member. In the illustrative embodiment the fixed stator may be formed with one or more fluid conduits that are in fluid communication with one or fluid conduits formed in the floating stator. The fluid conduits in the floating stator may be in fluid communication with one or more fluid conduits formed in a sealing member. A rotational interface may exist between the sealing member and a shaft, and the various fluid conduits may be configured to create a fluid barrier at that interface. Other embodiments of a shaft seal assembly may create a fluid barrier at a rotational interface between a rotor and a floating stator.Type: ApplicationFiled: May 22, 2020Publication date: September 10, 2020Inventors: Neil F. Hoehle, Tom Horner
-
Publication number: 20200103035Abstract: An illustrative embodiment of a shaft seal assembly generally includes a first stator, a second stator, and a throttle member. In one illustrative embodiment, the second stator may be formed with a main body and an access plate positioned radially interior with respect to a portion of the first stator. The first stator and second stator may engage one another about a semi-spherical interface comprised of a convex surface on the second stator and a concave surface on the first stator. The second stator may include an internal channel in which a throttle member may be positioned, wherein a radially interior surface of the throttle member may be positioned a shaft.Type: ApplicationFiled: September 30, 2019Publication date: April 2, 2020Inventors: Neil F. Hoehle, Chandhini Gowthaman
-
Patent number: 10364895Abstract: A shaft seal assembly comprises a stator configured to engage a housing and a rotor positioned within the stator. The stator may include a main body, a stator inward radial projection extending radially inward from the stator main body, and a collection groove adjacent the stator inward radial projection. The rotor may include a rotor main body and a rotor axial projection extending from the rotor main body. The rotor axial projection may be positioned adjacent a distal end of the stator inward radial projection.Type: GrantFiled: April 21, 2016Date of Patent: July 30, 2019Assignee: Inpro/Seal LLCInventors: Chintan Shah, Neil F. Hoehle
-
Publication number: 20190170256Abstract: A shaft seal assembly may include a stator and a rotor. The rotor may be configured to rotate with a shaft, and the stator may be engaged with a housing. The stator and rotor may be configured with radial and/or axial recesses and/or radial and/or axial projections. These various features may be configured such that the stator and rotor cooperate to form a ring cavity. A cooperating ring may be positioned in the ring cavity, and the cooperating ring may be configured such that is circumferentially expandable so that the cooperating ring changes size and/or shape when it rotates as opposed to when it is not rotating.Type: ApplicationFiled: February 11, 2019Publication date: June 6, 2019Inventor: Neil F. Hoehle
-
Patent number: 10203036Abstract: A shaft seal assembly may include a stator and a rotor. The rotor may be configured to rotate with a shaft, and the stator may be engaged with a housing. The stator and rotor may be configured with radial and/or axial recesses and/or radial and/or axial projections. These various features may be configured such that the stator and rotor cooperate to form a ring cavity. A cooperating ring may be positioned in the ring cavity, and the cooperating ring may be configured such that is circumferentially expandable so that the cooperating ring changes size and/or shape when it rotates as opposed to when it is not rotating.Type: GrantFiled: June 20, 2016Date of Patent: February 12, 2019Assignee: Inpro/Seal LLCInventor: Neil F. Hoehle
-
Publication number: 20180175695Abstract: A bearing isolator and explosion-proof current diverting device may be configured to dissipate an electrical charge from a rotating piece of equipment to ground, such as from a motor shaft to a motor housing. One aspect of an explosion-proof current diverter ring may include a stator that may be mounted to the equipment housing and a rotor that may be mounted to a shaft. The rotor may rotate with the shaft. A conductive assembly may be positioned in a radial bore formed in the stator such that the conductive assembly contacts the rotor to conduct electricity from the shaft to the housing through the explosion-proof current diverting device. The explosion-proof current diverting device may be configured to define a flame path to achieve various explosion-proof certifications.Type: ApplicationFiled: November 21, 2017Publication date: June 21, 2018Inventors: Robert A. Tejano, Neil F. Hoehle
-
Publication number: 20180135759Abstract: An illustrative embodiment of a shaft seal assembly generally includes a fixed stator, a floating stator, and a sealing member. In the illustrative embodiment the fixed stator may be formed with one or more fluid conduits that are in fluid communication with one or fluid conduits formed in the floating stator. The fluid conduits in the floating stator may be in fluid communication with one or more fluid conduits formed in a sealing member. A rotational interface may exist between the sealing member and a shaft, and the various fluid conduits may be configured to create a fluid barrier at that interface. Other embodiments of a shaft seal assembly may create a fluid barrier at a rotational interface between a rotor and a floating stator.Type: ApplicationFiled: January 16, 2018Publication date: May 17, 2018Inventors: Neil F. Hoehle, Tom Horner
-
Publication number: 20180073640Abstract: A shaft seal assembly comprises a stator configured to engage a housing and a rotor positioned within the stator. The stator may include a main body, a stator inward radial projection extending radially inward from the stator main body, and a collection groove adjacent the stator inward radial projection. The rotor may include a rotor main body and a rotor axial projection extending from the rotor main body. The rotor axial projection may be positioned adjacent a distal end of the stator inward radial projection.Type: ApplicationFiled: November 1, 2017Publication date: March 15, 2018Inventors: Neil F. Hoehle, Chintan Shah
-
Patent number: 9831739Abstract: A bearing isolator and explosion-proof current diverting device may be configured to dissipate an electrical charge from a rotating piece of equipment to ground, such as from a motor shaft to a motor housing. One aspect of an explosion-proof current diverter ring may include a stator that may be mounted to the equipment housing and a rotor that may be mounted to a shaft. The rotor may rotate with the shaft. A conductive assembly may be positioned in a radial bore formed in the stator such that the conductive assembly contacts the rotor to conduct electricity from the shaft to the housing through the explosion-proof current diverting device. The explosion-proof current diverting device may be configured to define a flame path to achieve various explosion-proof certifications.Type: GrantFiled: June 17, 2016Date of Patent: November 28, 2017Assignee: Inpro/Seal LLCInventors: Robert A. Tejano, Neil F. Hoehle
-
Publication number: 20170077663Abstract: The current diverter rings and bearing isolators serve to dissipate an electrical charge from a rotating piece of equipment to ground, such as from a motor shaft to a motor housing. One embodiment of the current diverter ring includes an inner body and an outer body configured to clamp at least one conductive segment between them. In the preferred embodiments of the current diverter ring, the conductive segments are positioned in radial channels. The outer body may be affixed to a shaft, a motor housing, a bearing isolator, or other structure. The bearing isolator may incorporate a retention chamber for holding conductive segments within the stator of the bearing isolator, or the bearing isolator may be fashioned with a receptor groove into which a current diverter ring may be mounted.Type: ApplicationFiled: November 14, 2016Publication date: March 16, 2017Inventors: David C. Orlowski, Neil F. Hoehle, Robert A. Tejano, Shawn Horton
-
Publication number: 20160372987Abstract: A bearing isolator and explosion-proof current diverting device may be configured to dissipate an electrical charge from a rotating piece of equipment to ground, such as from a motor shaft to a motor housing. One aspect of an explosion-proof current diverter ring may include a stator that may be mounted to the equipment housing and a rotor that may be mounted to a shaft. The rotor may rotate with the shaft. A conductive assembly may be positioned in a radial bore formed in the stator such that the conductive assembly contacts the rotor to conduct electricity from the shaft to the housing through the explosion-proof current diverting device. The explosion-proof current diverting device may be configured to define a flame path to achieve various explosion-proof certifications.Type: ApplicationFiled: June 17, 2016Publication date: December 22, 2016Inventors: Robert A. Tejano, Neil F. Hoehle