Patents by Inventor Neil G. McIlvaine

Neil G. McIlvaine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10926099
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 23, 2021
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20190381330
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: December 21, 2018
    Publication date: December 19, 2019
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10159846
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 25, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 10118048
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: November 6, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 10105546
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 23, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Barry D. Curtin, John Daynes, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: 9788744
    Abstract: A patient advisory device (“PAD”) and its methods of use. The PAD may be configured to alert the patient about an estimated brain state of the patient. In preferred embodiments, the PAD is adapted to alert the patient of the patient's brain state, which corresponds to the patient's propensity of transitioning into an ictal brain state, e.g., having a seizure. Based on the specific type of alert, the patient will be made aware whether they are highly unlikely to have a seizure for a given period of time, an elevated propensity of having a seizure, a seizure is occurring or imminent, or the patient's brain state is unknown.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: October 17, 2017
    Assignee: CYBERONICS, INC.
    Inventors: Michael Bland, Kent W. Leyde, Neil G. McIlvaine, Shan Gaw, Peter Weiss, John F. Harris
  • Publication number: 20170021183
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20160303389
    Abstract: Technologies and implementations for a universally adaptable module for defibrillator monitors are generally disclosed.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Inventors: Kenneth J. PETERSON, John C. DAYNES, Mitchell A. SMITH, Moira M. GALVIN, David B. STEWART, Jennifer G. JENSEN, Matthew L. BIELSTEIN, Cathlene E. BUCHANAN, Jeffery S. EDWARDS, Clayton M. YOUNG, Neil G. MCILVAINE, Karen K. LANGMAN, Bethany J. JOHNSON
  • Patent number: 9457197
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 4, 2016
    Assignee: Physio-Control, Inc.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304145
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, John Daynes, Kevin C. Drew, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Publication number: 20130304146
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Ryan William Apperson, Matthew Lawrence Bielstein, Barry D. Curtin, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20130304142
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 14, 2013
    Applicant: Physio-Control, Inc.
    Inventors: Barry D. Curtin, John Daynes, Karen Kraft Langman, Mina Lim, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Publication number: 20090062682
    Abstract: A patient advisory device (“PAD”) and its methods of use. The PAD may be configured to alert the patient about an estimated brain state of the patient. In preferred embodiments, the PAD is adapted to alert the patient of the patient's brain state, which corresponds to the patient's propensity of transitioning into an ictal brain state, e.g., having a seizure. Based on the specific type of alert, the patient will be made aware whether they are highly unlikely to have a seizure for a given period of time, an elevated propensity of having a seizure, a seizure is occurring or imminent, or the patient's brain state is unknown.
    Type: Application
    Filed: July 28, 2008
    Publication date: March 5, 2009
    Inventors: Michael Bland, Kent W. Leyde, Neil G. McIlvaine, Shan Gaw, Peter Weiss, John F. Harris
  • Patent number: 6106556
    Abstract: A rigid or semi-rigid reinforcement member is inserted into or over the damaged portion of an injured tendon or ligament. The tendon or ligament is connected to the reinforcement member such that the cord-member combination can immediately withstand normal tensile forces. The interconnection can be mechanical, such as by pins extending through the sleeve reinforcement member and cord. The sleeve can be bioabsorbable over a sufficiently long period of time that the cord is healed by the time the sleeve is absorbed.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: August 22, 2000
    Assignee: Omeros Medical Systems, Inc.
    Inventors: Gregory A. Demopulos, Stephen A. Yencho, David A. Herrin, Neil G. McIlvaine, Michael D. Nelson, Milton R. Sigelmann, Jose T.V. de Castro, George Selecman, John Collins, Imrann Aziz, Gorm Bressner, Nicholas R. Kalayjian, Charles S. McCall, Robert W. Mericle
  • Patent number: 6080192
    Abstract: The damaged portion of an injured tendon or ligament (C) ("connective cord") is inserted into a thin, hollow sleeve (100, 110, 120, 130, 140, 160, 180, 200, 240, 260, 270, 300, 390, generically designated "S") and is connected to the sleeve (S) such that the cord-sleeve combination can immediately withstand normal tensile forces. The interconnection can be mechanical, such as by pins (22, 22',148, 150, 164, 188, 190, 206, 206', 210, 226, 230, 238, 239, 266, 286, 308) extending through the sleeve (S) and cord (C). The sleeve (S) can be bioabsorbable over a sufficiently long period of time that the cord (C) is healed by the time the sleeve (S) is absorbed.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: June 27, 2000
    Assignee: Omeros Medical Systems, Inc.
    Inventors: Gregory A. Demopulos, Stephen A. Yencho, David A. Herrin, Neil G. McIlvaine, Michael D. Nelson, Milton R. Sigelmann, Jose T. V. de Castro, George Selecman, John Collins, Imraan Aziz, Gorm Bressner
  • Patent number: D432541
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: October 24, 2000
    Assignee: Advanced Digital Information Corporation
    Inventor: Neil G. McIlvaine
  • Patent number: D724218
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 10, 2015
    Assignee: Physio-Control, Inc.
    Inventors: John Daynes, Mina Lim, Barry D Curtin, Karen Kraft Langman, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: D724219
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Physio-Control, Inc.
    Inventors: John Daynes, Mina Lim, Barry D Curtin, Karen Kraft Langman, Neil G. McIlvaine, E. Thomas McKay, Randy L. Merry, Ken Peterson, Mitchell Allen Smith
  • Patent number: D983379
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: April 11, 2023
    Assignee: Stryker Corporation
    Inventors: Neil G. McIlvaine, Christopher G. Alviar, Jeremy Edward Brummett, Cathlene Buchanan, Jonas Buck, Kenneth Howard Dickenson, Jeffery Scott Edwards, Kenneth J. Peterson, Johanna Schoemaker, Mitchell A. Smith, Fernd van Engelen, Markus Wierzoch
  • Patent number: D990428
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: June 27, 2023
    Assignee: Physio-Control, Inc.
    Inventors: Christopher G. Alviar, Neal Stanley Clark, Barry D. Curtin, Neil G. McIlvaine, Peter Nazaroff, Zack Pahlman, Jeremy Wong, Christian Schneider