Patents by Inventor Neil Hamilton Talbot

Neil Hamilton Talbot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110270067
    Abstract: The invention is a device and method for connecting a hermetic package to a flexible circuit such as for an electrode array in an implantable device. Attaching metal pads on a flexible circuit to metal pads on a hermetic device by conductive adhesive is known. A smooth metal, such as platinum, does not bond well to conductive epoxy. The invention provides a roughened surface, such as etching or applying high surface area platinum gray, to improve adhesion to platinum or other metal pads.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Inventors: Boozarjomehr Faraji, Robert J. Greenberg, James S. Little, Jerry Ok, Neil Hamilton Talbot, David Daomin Zhou
  • Publication number: 20110265322
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on the polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on the polymer base layer and the metal traces at least one tack opening. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on the polymer base layer; patterning the metal to form metal traces; depositing a polymer top layer on the polymer base layer and the metal traces; and preparing at least one tack opening.
    Type: Application
    Filed: June 23, 2011
    Publication date: November 3, 2011
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, James Singleton Little, Brian V. Mech
  • Patent number: 7991478
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: August 2, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, James Singleton Little, Brian V. Mech
  • Publication number: 20110118807
    Abstract: The present invention is an improved package and configuration for an implantable retinal prosthesis. The retinal prosthesis of the present invention includes an electrode array suitable to be mounted in close proximity to a retina, an electronics package and inductive receiving coil mounted next to each other on a strap surrounding the sclera so that the height above the sclera of the prosthesis is minimized.
    Type: Application
    Filed: December 22, 2010
    Publication date: May 19, 2011
    Inventors: Robert J. Greenberg, Jerry Ok, Jordan Neysmith, Kevin Wilkins, Neil Hamilton Talbot, Da-Yu Chang
  • Patent number: 7937153
    Abstract: An implantable electrode with increased stability having a clustered structure wherein the surface of the electrode is covered with a material comprising openings which are filled with sticks or posts. An implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. A method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: May 3, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Dao Min Zhou, Jerry Ok, Neil Hamilton Talbot, Brian V. Mech, James Singleton Little, Robert J. Greenberg
  • Patent number: 7914842
    Abstract: Polymer materials form electrode array bodies for neural stimulation, especially for retinal stimulation to create vision. The method lays down a polymer layer. Apply a metal layer to the polymer and pattern to create electrodes and leads. Apply a second polymer layer over the metal layer and pattern to leave openings for electrodes. The array and its supply cable are a single body. A method for manufacturing a flexible circuit electrode array, is: deposit a metal trace layer on an insulator polymer base layer; apply a layer of photoresist on the metal trace layer and pattern the metal trace layer and form metal traces on the insulator polymer base layer; activate the insulator polymer base layer and deposit a top insulator polymer layer and form a single insulating polymer layer with the base insulator polymer layer; wherein the insulator polymer layers are heated at 80-150° C. and then at 230-350° C.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: March 29, 2011
    Assignee: Second Sight Medical Products, Inc
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok, Brian V. Mech
  • Patent number: 7881799
    Abstract: An improved package and configuration for an implantable retinal prosthesis includes an electrode array suitable to be mounted in close proximity to a retina, an electronics package, and inductive receiving coil mounted next to each other on a strap surrounding the sclera so that the height above the sclera of the prosthesis is minimized.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: February 1, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Jerry Ok, Jordan Neysmith, Kevin Wilkins, Neil Hamilton Talbot, Da-Yu Chang
  • Patent number: 7877866
    Abstract: A method of manufacturing a flexible circuit electrode array that provides excellent adhesion between the polymer base layer and the polymer top layer and insulation of the trace metals and electrodes. A layer of polymer is laid down. A layer of metal is applied to the polymer and patterned to create electrodes and leads for those electrodes. A second layer of polymer is applied over the metal layer and patterned to leave openings for the electrodes, or openings are created later by means such as laser ablation. Hence the array and its supply cable are formed of a single body. Alternatively, multiple alternating layers of metal and polymer may be applied to obtain more metal traces within a given width.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: February 1, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok
  • Patent number: 7873419
    Abstract: An improved package and configuration for an implantable retinal prosthesis includes an electrode array suitable to be mounted in close proximity to a retina, an electronics package, and an inductive receiving coil mounted next to each other on a strap surrounding the sclera so that the height above the sclera of the prosthesis is minimized.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 18, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Jerry Ok, Jordan Neysmith, Kevin Wilkin, Neil Hamilton Talbot, Da-Yu Chang
  • Publication number: 20100197082
    Abstract: An implantable hermetically sealed microelectronic device and method of manufacture are disclosed. The microelectronic device of the present invention is hermetically encased in a insulator, such as alumina formed by ion bean assisted deposition (“IBAD”), with a stack of biocompatible conductive layers extending from a contact pad on the device to an aperture in the hermetic layer. In a preferred embodiment, one or more patterned titanium layers are formed over the device contact pad, and one or more platinum layers are formed over the titanium layers, such that the top surface of the upper platinum layer defines an external, biocompatible electrical contact for the device. Preferably, the bottom conductive layer is larger than the contact pad on the device, and a layer in the stack defines a shoulder.
    Type: Application
    Filed: March 17, 2010
    Publication date: August 5, 2010
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok, Honggang Jiang
  • Patent number: 7750076
    Abstract: A polymer layer comprising silicone contains oxide particles of SiO2, TiO2, Sb2O3, SnO2, Al2O3, ZnO, Fe2O3, Fe3O4, talc, hydroxyapatite or mixtures thereof and one or more metal traces embedded in the polymer layer, where the metal trace is bonded to the polymer silicon metal bond.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: July 6, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Lucien D. Laude, Neil Hamilton Talbot, Robert J. Greenberg
  • Patent number: 7709961
    Abstract: An implantable hermetically sealed microelectronic device and method of manufacture are disclosed. The microelectronic device of the present invention is hermetically encased in a insulator, such as alumina formed by ion bean assisted deposition (“IBAD”), with a stack of biocompatible conductive layers extending from a contact pad on the device to an aperture in the hermetic layer. In a preferred embodiment, one or more patterned titanium layers are formed over the device contact pad, and one or more platinum layers are formed over the titanium layers, such that the top surface of the upper platinum layer defines an external, biocompatible electrical contact for the device. Preferably, the bottom conductive layer is larger than the contact pad on the device, and a layer in the stack defines a shoulder.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 4, 2010
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, Jerry Ok, Honggang Jiang
  • Patent number: 7631424
    Abstract: The present invention provides a flexible circuit electrode array adapted for neural stimulation, comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces at least one tack opening; wherein said polymer base layer, said metal traces and said polymer top layer are thermoformed in a three dimensional shape. The present invention provides further a method of making a flexible circuit electrode array comprising depositing a polymer base layer; depositing metal on said polymer base layer; patterning said metal to form metal traces; depositing a polymer top layer on said polymer base layer and said metal traces; preparing at least one tack opening; and heating said flexible circuit electrode array in a mold to form a three dimensional shape in said flexible circuit electrode array.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 15, 2009
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Neil Hamilton Talbot, Jordan Matthew Neysmith, James Singleton Little, Brian V. Mech
  • Publication number: 20090270958
    Abstract: The present invention is an electrode array for neural stimulation suitable to be attached to neural tissue such that the attachment point acts as a fulcrum like point and contact with an end of the array body presses the other end of the array body into the neural tissue to be stimulated. This invention is particularly useful in a retinal electrode array for a visual prosthesis. By curving an electrode portion of an array body to approximate but not exceed (never more tightly curved) the curvature of the retina and applying force to the array by external means at the fulcrum like point, approximately even pressure across all electrodes is achieved.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Inventors: Robert J. Greenberg, Mohamed Khaldi, James Singleton Little, Jordan Matthew Neysmith, Neil Hamilton Talbot
  • Publication number: 20090143848
    Abstract: A cochlear stimulation device comprising an electrode array designed to provide enhanced charge injection capacity necessary for neural stimulation. The electrode array comprises electrodes with high surface area or a fractal geometry and correspondingly high electrode capacitance and low electrical impedance. The resultant electrodes have a robust surface and sufficient mechanical strength to withstand physical stress vital for long term stability. The device further comprises wire traces having a multilayer structure which provides a reduced width for the conducting part of the electrode array. The cochlear prosthesis is attached by a grommet to the cochleostomy that is made from a single piece of biocompatible polymer. The device, designed to achieve optimum neural stimulation by appropriate electrode design, is a significant improvement over commercially available hand-built devices.
    Type: Application
    Filed: November 7, 2008
    Publication date: June 4, 2009
    Inventors: Robert J. Greenberg, David Daomin Zhou, Jordan Matthew Neysmith, Kelly H. McClure, Jianing Wei, Neil Hamilton Talbot, James Singleton Little
  • Publication number: 20090118805
    Abstract: In a visual prosthesis electrodes stimulate retinal tissue to induce the perception of light to a user implanted with the prosthesis. The prosthesis must have a return, or common, electrode to make a complete circuit with the retinal tissue. To avoid stimulating tissue with the return electrode, it is advantageous if the electrode is large. The invention involver a flexible circuit electrode array comprising a polymer base layer, metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue a polymer top layer deposited on said polymer base layer and said metal traces, and a return electrode separate from said stimulating electrodes. The flexible circuit electrode array comprises a secondary coil for receiving visual data; an electronics package electrically coupled to said receiving coil, and a plurality of stimulating electrode electrically coupled to said electronics package.
    Type: Application
    Filed: July 7, 2008
    Publication date: May 7, 2009
    Inventors: Robert J. Greenberg, Jordan Matthew Neysmith, Neil Hamilton Talbot, James Singleton Little, Kelly H. McClure, Brian V. Mech, Rongqing Dai, David Daomin Zhou, Gaillard R. Nolan
  • Publication number: 20080288037
    Abstract: A flexible circuit electrode array with more than one layer of metal traces comprising: a polymer base layer; more than one layer of metal traces, separated by polymer layers, deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; and a polymer top layer deposited on said polymer base layer and said metal traces. Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, or cortical stimulation many purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow.
    Type: Application
    Filed: November 2, 2007
    Publication date: November 20, 2008
    Inventors: Jordan Matthew Neysmith, Neil Hamilton Talbot, James Singleton Little, Brian V. Mech, Robert J. Greenberg, Qingfang Yao, Dao Min Zhou
  • Publication number: 20080288036
    Abstract: The disclosure relates to a flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and at least one support embedded in said array. The disclosure further relates to a flexible circuit electrode array comprising: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a folded flexible circuit cable connecting the electrode array with an interconnection pad.
    Type: Application
    Filed: February 15, 2008
    Publication date: November 20, 2008
    Inventors: Robert J. Greenberg, Eugene de Juan, Mark S. Humayun, Kelly H. McClure, Neil Hamilton Talbot, Jordan Matthew Neysmith, Brian V. Mech, James Singleton Little, Mohamed Khaldi
  • Publication number: 20080275527
    Abstract: Polymer materials are useful as electrode array bodies for neural stimulation. They are particularly useful for retinal stimulation to create artificial vision, cochlear stimulation to create artificial hearing, and cortical stimulation, and many related purposes. The pressure applied against the retina, or other neural tissue, by an electrode array is critical. Too little pressure causes increased electrical resistance, along with electric field dispersion. Too much pressure may block blood flow. Common flexible circuit fabrication techniques generally require that a flexible circuit electrode array be made flat. Since neural tissue is almost never flat, a flat array will necessarily apply uneven pressure. Further, the edges of a flexible circuit polymer array may be sharp and cut the delicate neural tissue. By applying the right amount of heat to a completed array, a curve can be induced.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 6, 2008
    Inventors: Robert J. Greenberg, Matthew J. McMahon, James Singleton Little, Kelly H. McClure, Brian V. Mech, Neil Hamilton Talbot, Jordan M. Neysmith
  • Publication number: 20080268134
    Abstract: The present invention provides an implantable electrode with increased stability having a clustered structure wherein the surface of the electrode is covered with a material comprising openings which are filled with sticks or posts. The present invention provides an implantable electrode with increased stability wherein the surface is of the electrode comprises mesh grids which are filled with sticks which are filed with a conducting or insulating material. The present invention provides a method of manufacturing an electrode with increased stability, comprising: depositing a metal layer on an base layer; applying photoresist layer on the metal layer; patterning the photoresist layer providing openings; electroplating the openings with metal; removing the photoresist layer leaving spaces; and filling the spaces with polymer.
    Type: Application
    Filed: October 26, 2007
    Publication date: October 30, 2008
    Inventors: Dao Min Zhou, Jerry Ok, Neil Hamilton Talbot, Brian V. Mech, James Singleton Little, Robert J. Greenberg