Patents by Inventor Neil Hitchman

Neil Hitchman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200087795
    Abstract: The use of a physical mixture of partially stabilized and fully stabilized zirconium oxide powder for producing a thermal barrier coating results in good thermal barrier properties and good mechanical properties is provided.
    Type: Application
    Filed: March 13, 2018
    Publication date: March 19, 2020
    Inventors: KATHARINA BERGANDER, CHRISTOPHER DEGEL, ARTURO FLORES RENTERIA, VLADIMIR GIMELFARB, NEIL HITCHMAN, MARKUS KLUPSCH, SASCHA MARTIN KYECK, TRAVIS PATTERSON, HELGE REYMANN, JOHANNES RICHTER, DAVID G. SANSOM, CATRINA WALTER, DIMITRIOS ZOIS
  • Patent number: 10323533
    Abstract: A thermal barrier coating (TBC) with depth-varying material properties is formed on a turbine component. Exemplary depth-varying material properties include physical ductility, strength and thermal resistivity that vary from the TBC layer inner to outer surface. Exemplary ways to modify physical properties include application of plural separate overlying layers of different material composition or by varying the applied material composition during the application of the TBC layer. Various embodiment described herein also apply a calcium-magnesium-aluminum-silicon (CMAS)-retardant material over the TBC layer to retard reaction with or adhesion of CMAS containing combustion particulates to the TBC layer. In other embodiments the CMAS retardant material is also applied within engineered groove features (EGFs) that are formed in the TBC surface.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: June 18, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Neil Hitchman, Ramesh Subramanian, Cora Schillig
  • Patent number: 10196920
    Abstract: Engineered groove features (EGFs) are formed within thermal barrier coatings (TBCs) of turbine engine components. The EGFs are advantageously aligned with likely stress zones within the TBC or randomly aligned in a convenient two-dimensional or polygonal planform pattern on the TBC surface and into the TBC layer. The EGFs localize thermal stress- or foreign object damage (FOD)-induced crack propagation within the TBC that might otherwise allow excessive TBC spallation and subsequent thermal exposure damage to the turbine component underlying substrate. Propagation of a crack is arrested when it reaches an EGF, so that it does not cross over the groove to otherwise undamaged zones of the TBC layer. In some embodiments, the EGFs are combined with engineered surface features (ESFs) that are formed in the component substrate or within intermediate layers applied between the substrate and the TBC.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 5, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ramesh Subramanian, Neil Hitchman, Dimitrios Zois, Jonathan E. Shipper, Jr., Cora Schillig
  • Publication number: 20180179645
    Abstract: A dense vertical cracked microstructure in a ceramic layer system made of an underline partially stabilized zirconia layer and an above laying fully stabilized zirconia layer show good erosion resistance and long life time is provided.
    Type: Application
    Filed: May 3, 2016
    Publication date: June 28, 2018
    Inventors: ARTURO FLORES RENTERIA, NEIL HITCHMAN, WERNER STAMM, DIMITRIOS ZOIS
  • Publication number: 20170175560
    Abstract: A turbine abradable component includes a support surface and a thermally sprayed ceramic/metallic abradable substrate coupled to the support surface for orientation proximal a rotating turbine blade tip circumferential swept path. An elongated pixelated major planform pattern (PMPP) of a plurality of discontinuous micro surface features (MSF) project from the substrate surface. The PMPP repeats radially along the swept path in the blade tip rotational direction, for selectively directing airflow between the blade tip and the substrate surface. Each MSF is defined by a pair of first opposed lateral walls defining a width, length and height that occupy a volume envelope of 1-12 cubic millimeters. The PMPP arrays of MSFs provide airflow control of hot gasses in the gap between the abradable surface and the blade tip with smaller potential rubbing surface area than solid projecting ribs with similar planform profiles.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 22, 2017
    Inventors: Gary B. MERRILL, Marco Claudio Pio BRUNELLI, Jonathan E. SHIPPER Jr., David G. SANSOM, Cora SCHILLIG, Dimitrios ZOIS, Neil HITCHMAN
  • Publication number: 20160369637
    Abstract: Thermal barrier coatings (TBCs) for turbine engine components are applied over engineered surface features (ESFs) that are formed in the component substrate or within intermediate layers applied between the substrate and the TBC. The ESFs help anchor the TBC layer and/or localize cracks that are bounded by one or more of the ESFs. During engine operation the ESFs arrest thermal stress-or foreign object damage (FOD)-induced crack propagation within the TBC that might otherwise allow excessive TBC spallation and subsequent thermal exposure damage to the turbine component underlying substrate. In some embodiments, the ESFs are combined with engineered groove features that are formed in the TBC.
    Type: Application
    Filed: February 18, 2015
    Publication date: December 22, 2016
    Inventors: Ramesh SUBRAMANIAN, Stefan LAMENSCHERF, Cora SCHILLIG, Neil HITCHMAN, Dimitrios ZOIS
  • Publication number: 20160369636
    Abstract: A thermal barrier coating (TBC) with depth-varying material properties is formed on a turbine component. Exemplary depth-varying material properties include physical ductility, strength and thermal resistivity that vary from the TBC layer inner to outer surface. Exemplary ways to modify physical properties include application of plural separate overlying layers of different material composition or by varying the applied material composition during the application of the TBC layer. Various embodiment described herein also apply a calcium-magnesium-aluminum-silicon (CMAS)-retardant material over the TBC layer to retard reaction with or adhesion of CMAS containing combustion particulates to the TBC layer. In other embodiments the CMAS retardant material is also applied within engineered groove features (EGFs) that are formed in the TBC surface.
    Type: Application
    Filed: February 18, 2015
    Publication date: December 22, 2016
    Inventors: Neil Hitchman, Ramesh Subramanian, Cora Schillig
  • Publication number: 20160362989
    Abstract: Engineered groove features (EGFs) are formed within thermal barrier coatings (TBCs) of turbine engine components. The EGFs are advantageously aligned with likely stress zones within the TBC or randomly aligned in a convenient two-dimensional or polygonal planform pattern on the TBC surface and into the TBC layer. The EGFs localize thermal stress- or foreign object damage (FOD)-induced crack propagation within the TBC that might otherwise allow excessive TBC spallation and subsequent thermal exposure damage to the turbine component underlying substrate. Propagation of a crack is arrested when it reaches an EGF, so that it does not cross over the groove to otherwise undamaged zones of the TBC layer. In some embodiments, the EGFs are combined with engineered surface features (ESFs) that are formed in the component substrate or within intermediate layers applied between the substrate and the TBC.
    Type: Application
    Filed: February 18, 2015
    Publication date: December 15, 2016
    Inventors: Ramesh Subramanian, Neil Hitchman, Dimitrios Zois, Jonathan E. Shipper, Jr., Cora Schillig
  • Patent number: 9371253
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 9249680
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 2, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Gm Salam Azad, Zhihong Gao, Neil Hitchman, Nicholas F. Martin, Jr., David G. Sansom, Ramesh Subramanian
  • Patent number: 9151175
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting alternating rows of first and second height ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. The first ridges have a first ridge height greater than that of the second ridges. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, at and below the second ridge height, optimizes engine airflow characteristics, while the upper zone, between tips of the second and first ridges, is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: October 6, 2015
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Kok-Mun Tham, Vincent P. Laurello, Ching-Pang Lee, Gm Salam Azad, Nicholas F. Martin, Jr., David G. Sansom, Neil Hitchman
  • Publication number: 20150240652
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting asymmetric non-parallel walls or trapezoidal cross section ridges that reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. In some embodiments at least one angularly oriented first groove formed in the ridge plateau is adapted for angular orientation upstream a turbine blade rotation direction to resist blade tip airflow leakage and the ridges are separated by second grooves that are skewed relative to the respective ridge plateaus and the substrate that are also adapted for orientation upstream the turbine blade rotation direction to resist blade tip airflow leakage.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: SIEMENS ENERGY, INC.
    Inventors: Ching-Pang Lee, Gm Salam Azad, Zhihong Gao, Neil Hitchman, Nicholas F. Martin, JR., David G. Sansom, Ramesh Subramanian
  • Publication number: 20150240651
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting alternating rows of first and second height ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. The first ridges have a first ridge height greater than that of the second ridges. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, at and below the second ridge height, optimizes engine airflow characteristics, while the upper zone, between tips of the second and first ridges, is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Kok-Mun Tham, Vincent P. Laurello, Ching-Pang Lee, Gm Salam Azad, Nicholas F. Martin, JR., David G. Sansom, Neil Hitchman
  • Patent number: 9085490
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: July 21, 2015
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman
  • Patent number: 8939707
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of stepped first ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Each stepped first ridge has a first portion proximal the substrate surface with a pair of first opposed lateral walls terminating in a plateau, and a second portion terminating in a ridge tip. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, which at and below first portion height, optimizes engine airflow characteristics, while the upper zone, between the plateau and the second portion ridge is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon
  • Patent number: 8939706
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of ridges in planform patterns, establishing upper and lower wear zones. The lower wear zone reduces, redirects and/or blocks blade tip downstream airflow leakage, while the upper wear zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone. An elongated first ridge in the lower wear zone terminates in a continuous surface plateau. A plurality of second ridges or nibs, separated by grooves, project from the plateau, forming the upper wear zone. Each of the second ridges has a planform cross section smaller than the plateau planform cross section and a height smaller than the first ridge height. Some embodiments of the second ridges have spacing, planform cross sections, heights and separating groove dimensions selected for shearing when contacted by turbine blade tips.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill, Dimitrios Zois, Ramesh Subramanian
  • Publication number: 20140334939
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: November 1, 2013
    Publication date: November 13, 2014
    Applicant: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN, James MUNROE
  • Publication number: 20140178632
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN
  • Patent number: 8728967
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 20, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Publication number: 20130330507
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: October 22, 2012
    Publication date: December 12, 2013
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN