Patents by Inventor Neil Stephen Renninger

Neil Stephen Renninger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10106822
    Abstract: Methods for producing an isoprenoid are provided. A plurality of bacterial or fungal host cells is obtained. These cells comprise a heterologous nucleic acid encoding one or more enzymes of a mevalonate pathway for making isopentenyl pyrophosphate. Expression of the one or more enzymes is under control one or more heterologous transcriptional regulator. The mevalonate pathway comprises (i) an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA, (ii) an enzyme that converts HMG-CoA to mevalonate, (iii) an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate, (iv) an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate, and (v) an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate. The host cells are cultured in a medium under conditions that are suboptimal as compared to conditions for the maximum growth rate. Temperature is maintained at a level below that which would provide for a maximum specific growth rate for the host cells.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: October 23, 2018
    Assignee: Amyris, Inc.
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Patent number: 9765363
    Abstract: A system and method for producing bio-organic compounds may include a vessel, a first phase comprising an aqueous medium including host cells capable of producing a bio-organic compound, where the bio-organic compound comprises a second phase in contact with the aqueous medium.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: September 19, 2017
    Assignee: Amyris, Inc.
    Inventor: Neil Stephen Renninger
  • Publication number: 20160040190
    Abstract: Methods for producing an isoprenoid are provided. A plurality of bacterial or fungal host cells is obtained. These cells comprise a heterologous nucleic acid encoding one or more enzymes of a mevalonate pathway for making isopentenyl pyrophosphate. Expression of the one or more enzymes is under control one or more heterologous transcriptional regulator. The mevalonate pathway comprises (i) an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA, (ii) an enzyme that converts HMG-CoA to mevalonate, (iii) an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate, (iv) an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate, and (v) an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate. The host cells are cultured in a medium under conditions that are suboptimal as compared to conditions for the maximum growth rate. Temperature is maintained at a level below that which would provide for a maximum specific growth rate for the host cells.
    Type: Application
    Filed: October 23, 2015
    Publication date: February 11, 2016
    Inventors: Neil Stephen RENNINGER, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Patent number: 9200296
    Abstract: Methods for producing an isoprenoid are provided. A plurality of bacterial or fungal host cells is obtained. These cells comprise a heterologous nucleic acid encoding one or more enzymes of a mevalonate pathway for making isopentenyl pyrophosphate. Expression of the one or more enzymes is under control of at least one heterologous transcriptional regulator. The mevalonate pathway comprises (i) an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA, (ii) an enzyme that converts HMG-CoA to mevalonate, (iii) an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate, (iv) an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate, and (v) an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate. The host cells are cultured in a medium under conditions that are suboptimal as compared to conditions for the maximum growth rate. Temperature is maintained at a level below that which would provide for a maximum specific growth rate for the host cells.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: December 1, 2015
    Assignee: Amyris Inc.
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Publication number: 20130252295
    Abstract: Methods for producing an isoprenoid are provided. A plurality of bacterial or fungal host cells is obtained. These cells comprise a heterologous nucleic acid encoding one or more enzymes of a mevalonate pathway for making isopentenyl pyrophosphate. Expression of the one or more enzymes is under control of at least one heterologous transcriptional regulator. The mevalonate pathway comprises (i) an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA, (ii) an enzyme that converts HMG-CoA to mevalonate, (iii) an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate, (iv) an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate, and (v) an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate. The host cells are cultured in a medium under conditions that are suboptimal as compared to conditions. Temperature is maintained at a level below that which would provide for a maximum specific growth rate for the host cells.
    Type: Application
    Filed: March 20, 2013
    Publication date: September 26, 2013
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Publication number: 20110287476
    Abstract: The present invention provides methods for a robust production of isoprenoids via one or more biosynthetic pathways. The invention also provides nucleic acids, enzymes, expression vectors, and genetically modified host cells for carrying out the subject methods. The invention also provides fermentation methods for high productivity of isoprenoids from genetically modified host cells.
    Type: Application
    Filed: December 15, 2009
    Publication date: November 24, 2011
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Patent number: 7942940
    Abstract: Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise a C10 bicyclic isoprenoid such as carane, pinane, sabinane or a combination thereof.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: May 17, 2011
    Assignee: Amyris Biotechnologies, Inc.
    Inventors: Neil Stephen Renninger, Jason A. Ryder, Karl J. Fisher
  • Patent number: 7935156
    Abstract: Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise limonane.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: May 3, 2011
    Assignee: Amyris Biotechnologies, Inc.
    Inventors: Neil Stephen Renninger, Jason A. Ryder, Karl J. Fisher
  • Patent number: 7846222
    Abstract: A fuel composition comprises farnesane and/or farnesane derivatives and a conventional fuel component selected from diesel fuel, jet fuel, kerosene or gasoline. The farnesane or farnesane derivative can be used as a fuel component or as a fuel additive in the fuel composition. The fuel composition may further comprise a conventional fuel additive. Methods of making and using the fuel composition are also disclosed.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: December 7, 2010
    Assignee: Amyris Biotechnologies, Inc.
    Inventors: Neil Stephen Renninger, Derek James Mcphee
  • Publication number: 20100281845
    Abstract: Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise a C10 bicyclic isoprenoid such as carane, pinane, sabinane or a combination thereof.
    Type: Application
    Filed: November 20, 2007
    Publication date: November 11, 2010
    Inventors: Neil Stephen Renninger, Jason A. Ryder, Karl J. Fisher
  • Publication number: 20100281846
    Abstract: Provided herein are, among other things, jet fuel compositions and methods of making and using the same. In some embodiments, the fuel compositions comprise at least a fuel component readily and efficiently produced, at least in part, from a microorganism. In certain embodiments, the fuel compositions provided herein comprise a high concentration of at least a bioengineered fuel component. In further embodiments, the fuel compositions provided herein comprise limonane.
    Type: Application
    Filed: November 20, 2007
    Publication date: November 11, 2010
    Inventors: Neil Stephen Renninger, Jason A. Ryder, Karl J. Fisher
  • Patent number: 7659097
    Abstract: The present invention provides methods for a robust production of isoprenoids via one or more biosynthetic pathways. The invention also provides nucleic acids, enzymes, expression vectors, and genetically modified host cells for carrying out the subject methods. The invention also provides fermentation methods for high productivity of isoprenoids from genetically modified host cells.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: February 9, 2010
    Assignee: Amyris Biotechnologies, Inc.
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Reiling, Rika Regentin, Christopher John Paddon
  • Publication number: 20080274523
    Abstract: The present invention provides methods for a robust production of isoprenoids via one or more biosynthetic pathways. The invention also provides nucleic acids, enzymes, expression vectors, and genetically modified host cells for carrying out the subject methods. The invention also provides fermentation methods for high productivity of isoprenoids from genetically modified host cells.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 6, 2008
    Inventors: Neil Stephen Renninger, Jack Newman, Keith Kinkead Rolling, Rika Regentin, Christopher John Paddon
  • Patent number: 7399323
    Abstract: A fuel composition comprises farnesane and/or farnesane derivatives and a conventional fuel component selected from diesel fuel, jet fuel, kerosene or gasoline. The farnesane or farnesane derivative can be used as a fuel component or as a fuel additive in the fuel composition. The fuel composition may further comprise a conventional fuel additive. Methods of making and using the fuel composition are also disclosed.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: July 15, 2008
    Assignee: Amyris Biotechnologies, Inc.
    Inventors: Neil Stephen Renninger, Derek James McPhee