Patents by Inventor Neil Switz

Neil Switz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210348243
    Abstract: The present disclosure relates to methods using CRISPR-Cas13 enzyme, complexed with SARS-CoV-2 crRNA guide RNAs to detect and quantify the presence of SARS-CoV-2 RNA in a sample with enhanced specificity and sensitivity. These methods can be used to diagnose SARS-CoV-2 infection, quantify the concentration of SARS-CoV-2 RNA present in a sample, identify the presence of different SARS-CoV-2 splice variants, subtypes, or mutations, and to monitor reactivation of SARS-CoV-2 transcription.
    Type: Application
    Filed: March 18, 2021
    Publication date: November 11, 2021
    Inventors: Melanie Ott, Parinaz Fozouni, Jennifer A. Doudna, Daniel A. Fletcher, David Savage, Emeric Charles, Sungmin Son, Gagandeep Renuka Kumar, Neil Switz
  • Patent number: 11129532
    Abstract: A portable retinal imaging device for imaging the fundus of the eye. The device includes an ocular imaging device containing ocular lensing and filters, a fixation display, and a light source, and is configured for coupling to a mobile device containing a camera, display, and application programming for controlling retinal imaging. The light source is configured for generating a sustained low intensity light (e.g., IR wavelength) during preview, followed by a light flash during image capture. The ocular imaging device works in concert with application programming on the mobile device to control subject gaze through using a fixation target when capturing retinal imaging on the mobile device, which are then stitched together using imaging processing into an image having a larger field of view.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: September 28, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Robi Maamari, Neil Switz, Todd Margolis, Frank Myers, III, Kim Tyson, Clay Reber
  • Patent number: 10989907
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: April 27, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 10745748
    Abstract: In some embodiments, a variety of devices and methods for conducting microfluidic analyses are utilized herein, including devices that can be utilized to conduct thermal cycling reactions such as nucleic acid amplification reactions. The devices include elastomeric components; in some instances, much or all of the device is composed of elastomeric material. Amplification products (amplicons) can be detected and distinguished (whether isolated in a reaction chamber or at any subsequent time) using routine methods for detecting nucleic acids. An example of a detection method includes hybridization to arrays of immobilized oligo or polynucleotides.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: August 18, 2020
    Assignee: FLUIDIGM CORPORATION
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20200257103
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 13, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20200237216
    Abstract: A handheld, ocular imaging device and system that employs the camera, processor and programming of a mobile phone, tablet or other smart device coupled to optical elements and illumination elements that can be used to image the structures of the eye in non-clinical locations, for example is presented. The modular device provides multi-functionality (fluorescein imaging, fluorescence, brightfield, infrared (IR) imaging, near-infrared (NIR) imaging) and multi-region imaging (retinal, corneal, external, etc.) of the eye along with the added features of image processing, storage and wireless data transmission for remote storage and evaluation. Acquired ocular images can also be transmitted directly from the device to the electronic medical records of a patient without the need for an intermediate computer system.
    Type: Application
    Filed: December 19, 2019
    Publication date: July 30, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Robi Maamari, Neil Switz, Todd P. Margolis
  • Publication number: 20200159001
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: September 23, 2019
    Publication date: May 21, 2020
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 10542885
    Abstract: A handheld, ocular imaging device and system that employs the camera, processor and programming of a mobile phone, tablet or other smart device coupled to optical elements and illumination elements that can be used to image the structures of the eye in home-based, ambulatory-care, hospital-based, or emergency-care settings, is presented. The modular device provides multi-functionality (fluorescein imaging, fluorescence, brightfield, infrared (IR) imaging, near-infrared (NIR) imaging) and multi-region imaging (retinal, corneal, external, etc.) of the eye along with the added features of image processing, storage and wireless data transmission for remote storage and evaluation. Acquired ocular images can also be transmitted directly from the device to the electronic medical records of a patient without the need for an intermediate computer system.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: January 28, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Robi Maamari, Neil Switz, Todd P. Margolis
  • Publication number: 20190243117
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: October 3, 2018
    Publication date: August 8, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20190153511
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: September 18, 2018
    Publication date: May 23, 2019
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20190117064
    Abstract: A portable retinal imaging device for imaging the fundus of the eye. The device includes an ocular imaging device containing ocular lensing and filters, a fixation display, and a light source, and is configured for coupling to a mobile device containing a camera, display, and application programming for controlling retinal imaging. The light source is configured for generating a sustained low intensity light (e.g., IR wavelength) during preview, followed by a light flash during image capture. The ocular imaging device works in concert with application programming on the mobile device to control subject gaze through using a fixation target when capturing retinal imaging on the mobile device, which are then stitched together using imaging processing into an image having a larger field of view.
    Type: Application
    Filed: October 9, 2018
    Publication date: April 25, 2019
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Robi Maamari, Neil Switz, Todd Margolis, Frank Myers, III, Kim Tyson, Clay Reber
  • Patent number: 10126539
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: November 13, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 10106846
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: October 23, 2018
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20170321249
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 9, 2017
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20170160533
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: November 9, 2016
    Publication date: June 8, 2017
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Patent number: 9663821
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: May 30, 2017
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 9523845
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: December 20, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill
  • Publication number: 20160296112
    Abstract: A handheld, ocular imaging device and system that employs the camera, processor and programming of a mobile phone, tablet or other smart device coupled to optical elements and illumination elements that can be used to image the structures of the eye in home-based, ambulatory-care, hospital-based, or emergency-care settings, is presented. The modular device provides multi-functionality (fluorescein imaging, fluorescence, brightfield, infrared (IR) imaging, near-infrared (NIR) imaging) and multi-region imaging (retinal, corneal, external, etc.) of the eye along with the added features of image processing, storage and wireless data transmission for remote storage and evaluation. Acquired ocular images can also be transmitted directly from the device to the electronic medical records of a patient without the need for an intermediate computer system.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Robi Maamari, Neil Switz, Todd P. Margolis
  • Publication number: 20160194685
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 7, 2016
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Publication number: 20160054555
    Abstract: An imaging system consisting of a cell-phone with camera as the detection part of an optical train which includes other components. Optionally, an illumination system to create controlled contrast in the sample. Uses include but are not limited to disease diagnosis, symptom analysis, and post-procedure monitoring, and other applications to humans, animals, and plants.
    Type: Application
    Filed: August 28, 2015
    Publication date: February 25, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Fletcher, Wendy Hansen, Neil Switz, David N. Breslauer, Erik Douglas, Robi Maamari, Wilbur Lam, Jesse Dill