Patents by Inventor Neil W Bressloff

Neil W Bressloff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11259918
    Abstract: A frame for an implantable medical device, comprising: a first member, comprising a plurality of struts defining a plurality of cells, wherein the first member is annular and defines a longitudinal direction which is parallel to the axis of the first member, a radial direction, and a circumferential direction; a second member, comprising a plurality of struts and coupled to the first member at circumferentially distributed locations; wherein the second member overlaps a first end portion of the first member and extends beyond the first end portion of the first member.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: March 1, 2022
    Assignee: Carena Healthcare Ltd
    Inventors: Neil W. Bressloff, Jonathan Bailey
  • Patent number: 10642942
    Abstract: A method of designing or selecting an implantable medical device comprises the steps of: i) obtaining a plurality of measured data points of a characteristic of an anatomical feature of an individual; ii) using said data points to construct a surrogate model of said characteristic, the surrogate model being constructed by interpolating or regressing measured data points of the characteristic, and using said surrogate model to obtain predicted values of said characteristic at a plurality of locations; iii) using said predicted values to determine or select at least one value of a design parameter of the implantable medical device. There is further disclosed a method of monitoring or diagnosing a disease or disorder.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: May 5, 2020
    Inventor: Neil W. Bressloff
  • Publication number: 20190224008
    Abstract: A frame for an implantable medical device, comprising: a first member, comprising a plurality of struts defining a plurality of cells, wherein the first member is annular and defines a longitudinal direction which is parallel to the axis of the first member, a radial direction, and a circumferential direction; a second member, comprising a plurality of struts and coupled to the first member at circumferentially distributed locations; wherein the second member overlaps a first end portion of the first member and extends beyond the first end portion of the first member.
    Type: Application
    Filed: October 3, 2017
    Publication date: July 25, 2019
    Inventors: Neil W. Bressloff, Jonathan Bailey
  • Patent number: 9707109
    Abstract: A tubular stent has first and second ends and a longitudinal axis therebetween. The tubular stent is formed from a network of struts which defines a cylindrical surface about the longitudinal axis, the struts delineating a plurality of cells within the network, there being rows of cells parallel to the longitudinal axis. At least one cell in each row is a nodal cell. There is an increase in the maximum length parallel to the longitudinal axis of cells from the nodal cell to a first distal cell in the row that is closer to the first or second end of the tubular stent. There is a second distal cell in the row which has a different maximum length parallel to the longitudinal axis from the nodal cell and the first distal cell. The network of struts comprises a plurality of circumferential rings. Each ring extends perpendicularly to the longitudinal axis and the rings are located adjacent to each other parallel to the longitudinal axis to define the cylindrical surface.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: July 18, 2017
    Assignee: Arterius Limited
    Inventors: Neil W. Bressloff, Sanjay Pant, Kadem Gayad Al-Lamee
  • Publication number: 20170076014
    Abstract: A method of designing or selecting an implantable medical device comprises the steps of: i) obtaining a plurality of measured data points of a characteristic of an anatomical feature of an individual; ii) using said data points to construct a surrogate model of said characteristic, the surrogate model being constructed by interpolating or regressing measured data points of the characteristic, and using said surrogate model to obtain predicted values of said characteristic at a plurality of locations; iii) using said predicted values to determine or select at least one value of a design parameter of the implantable medical device. There is further disclosed a method of monitoring or diagnosing a disease or disorder.
    Type: Application
    Filed: February 13, 2015
    Publication date: March 16, 2017
    Inventor: Neil W. Bressloff
  • Publication number: 20160120668
    Abstract: A tubular stent has first and second ends and a longitudinal axis therebetween. The tubular stent is formed from a network of struts which defines a cylindrical surface about the longitudinal axis, the struts delineating a plurality of cells within the network, there being rows of cells parallel to the longitudinal axis. At least one cell in each row is a nodal cell. There is an increase in the maximum length parallel to the longitudinal axis of cells from the nodal cell to a first distal cell in the row that is closer to the first or second end of the tubular stent. There is a second distal cell in the row which has a different maximum length parallel to the longitudinal axis from the nodal cell and the first distal cell. The network of struts comprises a plurality of circumferential rings. Each ring extends perpendicularly to the longitudinal axis and the rings are located adjacent to each other parallel to the longitudinal axis to define the cylindrical surface.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 5, 2016
    Applicant: Arterius Limited
    Inventors: Neil W. Bressloff, Sanjay Pant, Kadem Gayad AI-Lamee
  • Patent number: 9271852
    Abstract: A tubular stent (1) has first and second ends (2,3) and a longitudinal axis (4) therebetween. The tubular stent (1) is formed from a network of struts which defines a cylindrical surface about the longitudinal axis (4), the struts delineating a plurality of cells {23, 30, 31, 32, 33) within the network, there being rows of cells parallel to the longitudinal axis (4). At least one cell in each row is a nodal cell (23). There is an increase in the maximum length parallel to the longitudinal axis (4) of cells from the at least one nodal cell (23) to a first distal cell (30) in the row that is closer to the first or second end (2, 3) of the tubular stent (1). There is a second distal cell (31) in the row which has a different maximum length parallel to the longitudinal axis (4) from the nodal cell (23) and the first distal cell (30). The network of struts comprises a plurality of circumferential rings (6, 6?, 9, 9?, 13, 13?, 16, 16?, 17, 17?).
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 1, 2016
    Assignee: Arterius Limited
    Inventors: Neil W. Bressloff, Sanjay Pant, Kadem Gayad Al-Lamee
  • Patent number: 8831913
    Abstract: A method of design optimization, the method comprising producing a first computer model of a first geometry, producing a CFD mesh from the first computer model, using the CFD mesh from the first computer to produce a measure of the fluid dynamic performance of the first geometry, producing a new computer model of a new geometry, producing a CFD mesh from the new computer model, using the CFD mesh to produce a measure of the fluid dynamic performance of the new geometry, and “identifying an optimal geometry using the fluid dynamic performance measurements of the first and new geometries previously produced.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: September 9, 2014
    Assignee: Airbus Operations Limited
    Inventors: Carren Holden, Adam Nurdin, Neil W. Bressloff, Andrew K. Keane
  • Publication number: 20140107764
    Abstract: A tubular stent (1) has first and second ends (2,3) and a longitudinal axis (4) therebetween. The tubular stent (1) is formed from a network of struts which defines a cylindrical surface about the longitudinal axis (4), the struts delineating a plurality of cells {23, 30, 31, 32, 33) within the network, there being rows of cells parallel to the longitudinal axis (4). At least one cell in each row is a nodal cell (23). There is an increase in the maximum length parallel to the longitudinal axis (4) of cells from the at (east one nodal cell (23) to a first distal cell (30) in the row that is closer to the first or second end (2, 3) of the tubular stent (1). There is a second distal cell (31) in the row which has a different maximum length parallel to the longitudinal axis (4) from the nodal cell (23) and the first distal cell (30). The network of struts comprises a plurality of circumferential rings (6, 6?, 9, 9?, 13, 13?, 16, 16?, 17, 17?).
    Type: Application
    Filed: April 20, 2012
    Publication date: April 17, 2014
    Applicant: Arterius Limited
    Inventors: Neil W. Bressloff, Sanjay Pant, Kadem Gayad Al-Lamee
  • Patent number: 8600534
    Abstract: A method of designing a structure, such as an airfoil section. A first set of candidate designs is generated in a first optimisation process, each candidate design comprising a set of M design variables associated with an M-dimensional design space. A subset of the first set of candidate designs is selected. The selected subset of candidate designs is analysed by proper orthogonal decomposition or principal component analysis to generate an N-dimensional design space defined by N design variables, N being less than M. A second set of one or more candidate designs is then generated in a second optimisation process, each candidate design comprising a set of N design variables associated with the N-dimensional design space.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 3, 2013
    Assignee: Airbus Operations Ltd
    Inventors: Carren Holden, David J J Toal, Neil W. Bressloff, Andrew J. Keane
  • Publication number: 20100318327
    Abstract: A method of design optimization includes: a) producing a first computer model of a first geometry, the first computer model including: i) a set of nodes; and ii) a set of construction points each having a position defined by a local co-ordinate system; b) producing a computational fluid dynamics (CFD) mesh from the first computer model; c) using the CFD mesh to produce a measure of the fluid dynamic performance of the first geometry, such as drag count or lift coefficient; d) producing a new computer model of a new geometry by: i) moving one or more of the nodes; and ii) recalculating the positions of the construction points in response to movement of the one or more nodes; e) producing a computational fluid dynamics (CFD) mesh from the new computer model; f) using the CFD mesh to produce a measure of the fluid dynamic performance of the new geometry, such as drag count or lift coefficient; and g) identifying an optimal geometry using the fluid dynamic performance measurements of the first and new geometries
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: AIRBUS UK LIMITED
    Inventors: Carren HOLDEN, Adam NURDIN, Neil W. BRESSLOFF, Andrew K. KEANE
  • Publication number: 20100004769
    Abstract: A method of designing a structure, such as an airfoil section. A first set of candidate designs is generated in a first optimisation process, each candidate design comprising a set of M design variables associated with an M-dimensional design space. A subset of the first set of candidate designs is selected. The selected subset of candidate designs is analysed by proper orthogonal decomposition or principal component analysis to generate an N-dimensional design space defined by N design variables, N being less than M. A second set of one or more candidate designs is then generated in a second optimisation process, each candidate design comprising a set of N design variables associated with the N-dimensional design space.
    Type: Application
    Filed: June 29, 2009
    Publication date: January 7, 2010
    Applicant: AIRBUS OPERATIONS LTD
    Inventors: Carren HOLDEN, David JJ TOAL, Neil W. BRESSLOFF, Andrew J. KEANE
  • Patent number: 7092845
    Abstract: A method of identifying a configuration of an object, the method comprising the steps of: specifying a plurality of different object configurations; for each specified object configuration, using a first simulation procedure to simulate the specified conditions so as to generate data that can be used to evaluate the object configuration against the optimisation criterion; identifying a functional relationship between data generated for each specified object configuration; using the functional relationship and the optimisation criterion to select a data point, and identifying an object configuration corresponding thereto; and using a second simulation procedure, wherein the second simulation procedure comprises iteratively calculating values of variables characterising the object configuration until the values satisfy a convergence criterion, wherein for at least one of the specified object configurations, the first simulation procedure is completed before the values calculated therein satisfy the convergence
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 15, 2006
    Assignees: BAE Systems plc, Rolls-Royce plc
    Inventors: Andrew J Keane, Neil W Bressloff, Alexander I J Forrester