Patents by Inventor Nelson S. Bell

Nelson S. Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230272232
    Abstract: The use of copper materials as a replacement for the more expensive coinage metals (i.e., silver, gold) in printed circuits has come to the forefront. For printing, the use of nanomaterials has allowed for significant advances through the use of nanoinks. Unfortunately, as the nanoregime is entered, the increased surface area leads to increased reactivity with atmospheric oxygen which results in a reduction in the conductivity of the printed circuits. To overcome this issue, a synthesis method uses a room temperature reduction of a copper organometallic precursor by the simple addition of catechol-based surfactants to prevent oxidation and agglomeration of the final copper nanoparticles. The selection of these catechol-based surfactants is based on non-aqueous solubility, high surface affinity, and anti-oxidative potential as surface ligands.
    Type: Application
    Filed: February 6, 2023
    Publication date: August 31, 2023
    Inventors: Nelson S. Bell, Timothy J. Boyle
  • Patent number: 11677071
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 13, 2023
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents, The University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Publication number: 20220228295
    Abstract: Refractory transition metal-carbide (RTM-C) fibers were synthesized via the Forcespinning™ method. This method allows for simple and rapid synthesis of these RTM-C fibers with the ability to make grams of fibers quickly.
    Type: Application
    Filed: September 27, 2021
    Publication date: July 21, 2022
    Inventors: LaRico Juan Treadwell, James Nicholas, Nelson S. Bell
  • Publication number: 20220097020
    Abstract: An anionic sorption agent, method for forming the anionic sorption agent and a barrier system are disclosed. The anionic sorption agent including a modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites. The method for forming the anionic sorption agent includes providing a pseudo or glycol-boehmite base and contacting the pseudo or glycol-boehmite base a modifying composition comprising a metallic ion to form the modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites. The barrier system includes the anionic sorption agent comprising a first barrier component comprising a modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites and a second barrier component comprising a cationic sorption agent.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Edward N. Matteo, Clay Payne, Amanda Sanchez, Nelson S. Bell, Yifeng Wang, Jessica N. Kruichak, Melissa Marie Mills
  • Patent number: 11207658
    Abstract: An anionic sorption agent, method for forming the anionic sorption agent and a barrier system are disclosed. The anionic sorption agent including a modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites. The method for forming the anionic sorption agent includes providing a pseudo or glycol-boehmite base and contacting the pseudo or glycol-boehmite base a modifying composition comprising a metallic ion to form the modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites. The barrier system includes the anionic sorption agent comprising a first barrier component comprising a modified pseudo or glycol-boehmite base comprising a structure having cationic metal ion sites and a second barrier component comprising a cationic sorption agent.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 28, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Edward N. Matteo, Clay Payne, Amanda Sanchez, Nelson S. Bell, Yifeng Wang, Jessica N. Kruichak, Melissa Marie Mills
  • Publication number: 20210179879
    Abstract: Metal hydride nanoparticle inks provide an alternative to traditional metal inks. Metal hydride nanoinks can be printed by aerosol jet printing and cured at elevated temperatures to provide conductive patterns. As an example, printed patterns of titanium hydride nanoink on polyimide and cured by pulsed photonic curing were found to exhibit electrical conductivity, with a sheet resistance on the order of ˜150 ?/?.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 17, 2021
    Inventors: Timothy J. Boyle, Nelson S. Bell, Adam W. Cook, Jessica Rimsza, Ethan Benjamin Secor
  • Patent number: 10889506
    Abstract: The present invention relates to vanadium oxide and methods of controlling reaction processes for making such materials (e.g., powders). In particular embodiments, the method includes control of oxygen partial pressure in order to kinetically control the oxidation species of the crystalline vanadium oxide material. Other methods, uses, systems, protocols, and coatings are also described.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: January 12, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Mark A. Rodriguez, Nelson S. Bell, Paul G. Clem, Cynthia Edney, James Griego
  • Publication number: 20200251727
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Application
    Filed: April 14, 2020
    Publication date: August 6, 2020
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Patent number: 10651461
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: May 12, 2020
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents, The University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Patent number: 10411251
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 10, 2019
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents of the University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Publication number: 20190071319
    Abstract: The present invention relates to vanadium oxide and methods of controlling reaction processes for making such materials (e.g., powders). In particular embodiments, the method includes control of oxygen partial pressure in order to kinetically control the oxidation species of the crystalline vanadium oxide material. Other methods, uses, systems, protocols, and coatings are also described.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Inventors: Mark A. Rodriguez, Nelson S. Bell, Paul G. Clem, Cynthia Edney, James Griego
  • Patent number: 10160660
    Abstract: The present invention relates to vanadium oxide and methods of controlling reaction processes for making such materials (e.g., powders). In particular embodiments, the method includes control of oxygen partial pressure in order to kinetically control the oxidation species of the crystalline vanadium oxide material. Other methods, uses, systems, protocols, and coatings are also described.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: December 25, 2018
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Mark A. Rodriguez, Nelson S. Bell, Paul G. Clem, Cynthia Edney, James Griego
  • Publication number: 20180257144
    Abstract: A method to produce coinage metal nanoparticles reduces the time and temperature of processing of previous methods. The method enables the production of significantly larger batches of high quality metal nanoparticles. A xylene-based solvent can be used to form low viscosity nanoinks from the metal nanoparticles. Aerosol deposition and inkjet printing of the low viscosity nanoinks can support feature realization in the sub-50 ?m range, useful for electronic device fabrication.
    Type: Application
    Filed: March 5, 2018
    Publication date: September 13, 2018
    Inventors: Timothy J. Boyle, LaRico Juan Treadwell, Nelson S. Bell
  • Publication number: 20180248184
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Publication number: 20170181291
    Abstract: The present invention is directed to printing mixed ink systems, such as silver-copper or silver-copper-ceramic nanoparticle inks.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 22, 2017
    Inventors: Nelson S. Bell, Timothy J. Boyle, Adam Cook, Fadi F. Abdeljawad
  • Publication number: 20150118565
    Abstract: A novel lithium battery cathode, a lithium ion battery using the same and processes and preparation thereof are disclosed. The battery cathode is formed by force spinning. Fiber spinning allows for the formation of core-shell materials using material chemistries that would be incompatible with prior spinning techniques. A fiber spinning apparatus for forming a coated fiber and a method of forming a coated fiber are also disclosed.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 30, 2015
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Nelson S. Bell, Nancy A. Missert, Karen Lozano, Yatinkumar N. Rane
  • Patent number: 7427302
    Abstract: A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 23, 2008
    Inventors: Stanley H. Kravitz, Andrew M. Hecht, Alan P. Sylwester, Nelson S. Bell
  • Patent number: 7306780
    Abstract: A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: December 11, 2007
    Assignee: Sandia Corporation
    Inventors: Stanley H. Kravitz, Andrew M. Hecht, Alan P. Sylwester, Nelson S. Bell
  • Patent number: 6746496
    Abstract: A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: June 8, 2004
    Assignee: Sandia Corporation
    Inventors: Stanley H. Kravitz, Andrew M. Hecht, Alan P. Sylwester, Nelson S. Bell