Patents by Inventor Nestor Bojarczuk

Nestor Bojarczuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10304979
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 28, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Patent number: 9939366
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Patent number: 9911879
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20170138841
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Patent number: 9599513
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Publication number: 20160334273
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Patent number: 9417126
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Publication number: 20160225939
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Application
    Filed: June 18, 2015
    Publication date: August 4, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20160225927
    Abstract: A method and apparatus for manufacturing a nitrogen-doped CZTSSe layer for a solar cell is disclosed. A substrate is mounted in a vacuum chamber. A plurality of effusion cells are placed within the vacuum chamber in order to evaporate copper, zinc, tin, sulfur, and/or selenium to form elemental vapors in a region proximate the substrate. An RF-based nitrogen source delivers a nitrogen plasma in the region proximal to the substrate. The elemental vapors and the nitrogen plasma form a gas mixture in the region near the substrate, which then react at the substrate to form a CZTSSe absorber layer for a solar cell.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 4, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Marinus Hopstaken, Byungha Shin
  • Publication number: 20160093755
    Abstract: Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Byungha Shin, Yu Zhu
  • Patent number: 9287426
    Abstract: Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Supratik Guha, Byungha Shin, Yu Zhu
  • Publication number: 20150377702
    Abstract: In one aspect, a spectrometer insert is provided. The spectrometer insert includes: an enclosed housing; a first transparent window on a first side of the enclosed housing; a second transparent window on a second side of the enclosed housing, wherein the first side and the second side are opposing sides of the enclosed housing; and a sample mounting and heating assembly positioned within an interior cavity of the enclosed housing in between, and in line of sight of, the first transparent window and the second transparent window. A method for using the spectrometer insert to locally heat a sample so as to measure temperature-dependent optical properties of the sample is also provided.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Nestor A. Bojarczuk, Talia S. Gershon, Teodor K. Todorov, Theodore G. van Kessel
  • Patent number: 8987590
    Abstract: Embodiments relate to a method including forming a layer of copper zinc tin sulfide (CZTS) on a first layer of molybdenum (Mo) and annealing the CZTS layer and the first Mo layer to form a layer of molybdenum disulfide (MoS2) between the layer of CZTS and the first layer of Mo. The method includes forming a back contact on a first surface of the CZTS layer opposite the first Mo layer and separating the first Mo layer and the MoS2 layer from the CZTS layer to expose a second surface of the CZTS layer opposite the first surface. The method further includes forming a buffer layer on the second surface of the CZTS layer.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Keith E. Fogel, Supratik Guha, Byungha Shin
  • Publication number: 20140113416
    Abstract: A method for fabricating a carbon-based semiconductor device. A substrate is provided and source/drain contacts are formed on the substrate. A graphene channel is formed on the substrate connecting the source contact and the drain contact. A dielectric layer is formed on the graphene channel with a molecular beam deposition process. A gate contact is formed over the graphene channel and on the dielectric. The gate contact is in a non-overlapping position with the source and drain contacts leaving exposed sections of the graphene channel between the gate contact and the source and drain contacts.
    Type: Application
    Filed: June 28, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. BOJARCZUK, Matthew W. COPEL, Yu-ming LIN
  • Patent number: 8680393
    Abstract: Embodiments relate to a solar cell apparatus including a molybdenum (Mo) contact layer and an annealed absorber layer including zinc and sulfur directly adjacent to the Mo contact layer. The apparatus has no molybdenum disulfide (MoS2) layer located between the Mo contact layer and the annealed absorber layer. The apparatus further includes a buffer layer adjacent to the annealed absorber layer.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Keith E. Fogel, Supratik Guha, Byungha Shin
  • Publication number: 20140038344
    Abstract: Embodiments relate to a method including forming a layer of copper zinc tin sulfide (CZTS) on a first layer of molybdenum (Mo) and annealing the CZTS layer and the first Mo layer to form a layer of molybdenum disulfide (MoS2) between the layer of CZTS and the first layer of Mo. The method includes forming a back contact on a first surface of the CZTS layer opposite the first Mo layer and separating the first Mo layer and the MoS2 layer from the CZTS layer to expose a second surface of the CZTS layer opposite the first surface. The method further includes forming a buffer layer on the second surface of the CZTS layer.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Keith E. Fogel, Supratik Guha, Byungha Shin
  • Publication number: 20140034118
    Abstract: Embodiments relate to a solar cell apparatus including a molybdenum (Mo) contact layer and an annealed absorber layer including zinc and sulfur directly adjacent to the Mo contact layer. The apparatus has no molybdenum disulfide (MoS2) layer located between the Mo contact layer and the annealed absorber layer. The apparatus further includes a buffer layer adjacent to the annealed absorber layer.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 6, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Keith E. Fogel, Supratik Guha, Byungha Shin
  • Publication number: 20140001440
    Abstract: A carbon-based semiconductor device includes a substrate, source/drain contacts, a graphene channel, a dielectric layer, and a gate. The source/drain contacts are formed on the substrate. The graphene channel is formed on the substrate connecting the source contact and the drain contact. The dielectric layer is formed on the graphene channel with a molecular beam deposition process. The gate contact is formed over the graphene channel and on the dielectric. The gate contact is in a non-overlapping position with the source and drain contacts leaving exposed sections of the graphene channel between the gate contact and the source and drain contacts.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Nestor A. BOJARCZUK, Matthew W. COPEL, Yu-ming LIN
  • Patent number: 8518766
    Abstract: A field effect transistor (FET) includes a body region and a source region disposed at least partially in the body region. The FET also includes a drain region disposed at least partially in the body region and a molybdenum oxynitride (MoNO) gate. The FET also includes a dielectric having a high dielectric constant (k) disposed between the body region and the MoNO gate.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Nestor A. Bojarczuk, Michael P. Chudzik, Matthew W. Copel, Supratik Guha, Richard A. Haight, Vijay Narayanan, Martin P. O'Boyle, Vamsi K. Paruchuri
  • Publication number: 20120270385
    Abstract: A field effect transistor (FET) includes a body region and a source region disposed at least partially in the body region. The FET also includes a drain region disposed at least partially in the body region and a molybdenum oxynitride (MoNO) gate. The FET also includes a dielectric having a high dielectric constant (k) disposed between the body region and the MoNO gate.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nestor A. Bojarczuk, Michael P. Chudzik, Matthew W. Copel, Supratik Guha, Richard A. Haight, Vijay Narayanan, Martin P. O'Boyle, Vamsi K. Paruchuri