Patents by Inventor Nicholas A. Kotov
Nicholas A. Kotov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12330993Abstract: A method for forming a ceramic-based material comprises depositing a ceramic-precursor composition comprising nanoparticles having at least one dimension less than 100 nm and an aspect ratio of 1.5 or greater, and a carrier fluid on a surface of a substrate to form an as-deposited layer of the ceramic precursor composition; and sintering the as-deposited layer of the ceramic precursor composition at a sintering temperature to form a ceramic-based material.Type: GrantFiled: October 26, 2021Date of Patent: June 17, 2025Assignee: The Boeing CompanyInventors: Thomas Karl Tsotsis, Nicholas A. Kotov
-
Publication number: 20250116599Abstract: Systems and methods for object and material recognition are provided and include a hyperspectral infrared camera that captures a three-dimensional image of an object and black-body emissions data indicating a polarization of black-body radiation emitted from the object. An image processing device accesses a database of expected polarization signatures of black-body emissions from materials at different temperatures and determines a material of the object based on (i) the black-body emissions data indicating the polarization of the black-body radiation emitted from the object, (ii) an ambient temperature of the environment of the system, and (iii) the database of expected polarization signatures of black-body emissions from a plurality of materials for different temperatures.Type: ApplicationFiled: May 8, 2023Publication date: April 10, 2025Applicant: The Regents of the University of MichiganInventor: Nicholas A. KOTOV
-
Patent number: 12216043Abstract: Methods and devices for detecting chiral properties from a sample are provided. Light may be directed towards a sample in contact with a chiral nanoparticle. Third harmonic Mie scattering (THMS) optical activity generated by the chiral nanoparticle in contact with the sample can then be detected. A device for detecting chiral properties of a sample is also contemplated that includes Nat least one microwell having a volume of ?about 1 microliter configured to hold a chiral nanoparticle capable of generating third harmonic Mie scattering (THMS) optical activity and a sample to be analyzed. The device includes a source of light configured to generate and direct light toward the at least one microwell containing the chiral nanoparticle and the sample and at least one detector configured to detect third harmonic Mie scattering (THMS) generated by the chiral nanoparticle in the microwell.Type: GrantFiled: December 1, 2022Date of Patent: February 4, 2025Assignees: The Regents of The University of Michigan, University of BathInventors: Nicholas A. Kotov, Ventsislav Valev, Lukas Ohnoutek, Ji-Young Kim
-
Publication number: 20240418632Abstract: Methods and devices for detecting chiral properties from a sample are provided. Light may be directed towards a sample in contact with a chiral nanoparticle. Third harmonic Mie scattering (THMS) optical activity generated by the chiral nanoparticle in contact with the sample can then be detected. A device for detecting chiral properties of a sample is also contemplated that includes at least one microwell having a volume of ?about 1 microliter configured to hold a chiral nanoparticle capable of generating third harmonic Mie scattering (THMS) optical activity and a sample to be analyzed. The device includes a source of light configured to generate and direct light toward the at least one microwell containing the chiral nanoparticle and the sample and at least one detector configured to detect third harmonic Mie scattering (THMS) generated by the chiral nanoparticle in the microwell.Type: ApplicationFiled: December 1, 2022Publication date: December 19, 2024Applicants: The Regents of The University of Michigan, University of BathInventors: Nicholas A. KOTOV, Ventsislav VALEV, Lukas OHNOUTEK, Ji-Young KIM
-
Patent number: 12132169Abstract: A composite solid electrolyte for a solid-state electrochemical cell is provided. The electrolyte may include a plurality of aramid nanofibers, such as a branched aramid nanofiber network, an ionically conductive polymer, such as poly(ethylene oxide) or quaternary ammonia functionalized polyvinyl alcohol (QAFPVA), and an optional divalent ion salt. The electrolyte is particularly suitable for use with zinc ions, where the divalent ion salt may comprise zinc trifluoromethanesulfonate Zn(CF3SO3)2. An electrochemical cell or battery is provided incorporating such a composite solid electrolyte that cycles ions, such as zinc ions or hydroxide ions, suppresses or minimizes dendrite formation, while having good ionic conductivity and being flexible. This flexibility provides the ability to create deformations in the electrochemical cell, such as protrusions and recesses that may define a corrugated pattern.Type: GrantFiled: January 6, 2020Date of Patent: October 29, 2024Assignee: The Regents of The University of MichiganInventors: Nicholas A. Kotov, Mingqiang Wang, Ahmet Emrehan Emre
-
Patent number: 12032190Abstract: Material-Sensing Light Imaging, Detection, And Ranging (LIDAR) systems optionally include a laser configured to generate a light pulse, a beam steerer configured to produce a polarization-adjusted light pulse emitted towards an object, at least one polarizer configured to polarize reflected, scattered, or emitted light returned from the object, and a processor configured to detect at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object. The beam steerer may include a kirigami nanocomposite. Methods are also provided, including, for example, generating a light pulse, adjusting a polarization of the light pulse to produce a polarization-adjusted light pulse emitted towards an object, polarizing reflected, scattered, or emitted light returned from the object, and detecting at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object.Type: GrantFiled: April 15, 2021Date of Patent: July 9, 2024Assignee: The Regents of The University of MichiganInventors: Nicholas A. Kotov, Sharon Glotzer, Brian Shahbazian, Ryan Branch, Lizhi Xu, Wonjin Choi, Minjeong Cha, Matthew Spellings
-
Publication number: 20230130304Abstract: A method for forming a ceramic-based material comprises depositing a ceramic-precursor composition comprising nanoparticles having at least one dimension less than 100 nm and an aspect ratio of 1.5 or greater, and a carrier fluid on a surface of a substrate to form an as-deposited layer of the ceramic precursor composition; and sintering the as-deposited layer of the ceramic precursor composition at a sintering temperature to form a ceramic-based material.Type: ApplicationFiled: October 26, 2021Publication date: April 27, 2023Inventors: Thomas Karl Tsotsis, Nicholas A. Kotov
-
Patent number: 11407031Abstract: Self-assembly methods are provided for making hedgehog-shaped microparticles or nanoparticles. The method may comprise combining a metal-containing (e.g., Fe, Au) precursor, a chalcogen-containing precursor (e.g., Se, S), and a self-assembly additive (e.g., dodecanethiol (DT), oleylamine (OLA), hexadecyltrimethylammonium bromide (CTAB)). At least one hedgehog-shaped nanoscale, mesoscale, or microscale particle is formed that defines a core region formed of a first material and a plurality of needles connected to and substantially orthogonal to a surface of the core region. The needles comprise a second material. At least one of the first or the second material comprises iron or gold and optionally selenium or sulfur, for example, iron diselenide (FeSe2). Hedgehog-shaped microparticles or nanoparticles formed from such self-assembly methods are also provided.Type: GrantFiled: September 27, 2018Date of Patent: August 9, 2022Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Dawei Deng, Wenfeng Jiang, Douglas Montjoy
-
Publication number: 20220206154Abstract: Multidimensional Light Imaging, Detection, and Ranging (LIDAR) systems and methods optionally include a laser device configured to generate a plurality of light pulses emitted towards an object, a detector configured to receive a portion of the plurality of light pulses returned from the object, and a processor configured to generate a point cloud representing the object based on the plurality of light pulses received by the detector, the point cloud having a plurality of points, each point having a three?dimensional positional coordinate representing a location of the point on the object and having at least one additional value representing at least one of material information indicating a material of the object at the location of the point on the object or optical information indicating at least one optical characteristic of the plurality of light pulses returned from the surface of the object from the location of the point on the object.Type: ApplicationFiled: April 17, 2020Publication date: June 30, 2022Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventor: Nicholas A. KOTOV
-
Publication number: 20220069349Abstract: A composite solid electrolyte for a solid-state electrochemical cell is provided. The electrolyte may include a plurality of aramid nanofibers, such as a branched aramid nanofiber network, an ionically conductive polymer, such as poly(ethylene oxide) or quaternary ammonia functionalized polyvinyl alcohol (QAFPVA), and an optional divalent ion salt. The electrolyte is particularly suitable for use with zinc ions, where the divalent ion salt may comprise zinc trifluoromethanesulfonate Zn(CF3SO3)2 An electrochemical cell or battery is provided incorporating such a composite solid electrolyte that cycles ions, such as zinc ions or hydroxide ions, suppresses or minimizes dendrite formation, while having good ionic conductivity and being flexible. This flexibility provides the ability to create deformations in the electrochemical cell, such as protrusions and recesses that may define a corrugated pattern.Type: ApplicationFiled: January 6, 2020Publication date: March 3, 2022Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. KOTOV, Mingqiang WANG, Ahmet Emrehan EMRE
-
Patent number: 11167999Abstract: The present disclosure provides a biomimetic composite that includes a plurality of nanostructures each having at least one axial geometry region comprising an inorganic material. The nanostructures may be a plurality of substantially aligned (e.g., in a vertical orientation) axial geometry nanowires comprising zinc oxide or alternatively hedgehog-shaped nanoparticles with needles comprising zinc oxide. A polymeric matrix disposed in void regions defined between respective nanostructures of the plurality of nanostructures. The biomimetic composite exhibits a viscoelastic figure of merit (VFOM) of greater than or equal to about 0.001 up to about 0.6 or greater. Methods of making such biomimetic composites are also provided.Type: GrantFiled: February 22, 2019Date of Patent: November 9, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Bongjun Yeom
-
Patent number: 11156749Abstract: The present disclosure provides a structure comprising a polymeric structure or composite material having a surface patterned via methods employing a kirigami-type technique. The patterned surface may define a first row of at least two discontinuous cuts and a second row of at least two discontinuous cuts offset from the first row. The first row and the second row cooperate to define a plurality of bridge structures therebetween, making the nanocomposite is stretchable in at least one direction. Methods of making such patterned structures via kirigami techniques, for example, via photolithography top-down cutting are also provided. Devices incorporating such kirigami-patterned polymeric structures are also provided, such as strain tunable optic devices.Type: GrantFiled: April 7, 2016Date of Patent: October 26, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Terry Shyu, Lizhi Xu
-
Patent number: 11111343Abstract: Branched aramid nanofibers (ANFs) can be made by controlled chemical splitting of micro and macroscale aramid fiber by adjusting the reaction media containing aprotic component, protic component and a base. Branched ANFs have uniform size distribution of diameters in the nanoscale regime (below 200 nm) and high yield exceeding 95% of the nanofibers with this diameter. The method affords preparation of branched ANFs with 3-20 branches per one nanofiber and high aspect ratio. Branched ANFs form hydrogel or aerogels with highly porous 3D percolating networks (3DPNs) frameworks that are made into different shapes. Polymers and nanomaterials are impregnated into the 3DPNs through several methods. Gelation of branched ANFs facilitates layer-by-layer deposition in a process described as gelation assisted layer-by-layer deposition (gaLBL). A method of manufacturing battery components including ion conducting membranes, separators, anodes, and cathodes is described.Type: GrantFiled: December 29, 2016Date of Patent: September 7, 2021Assignee: The Regents of the University of MichiganInventors: Nicholas A. Kotov, Jian Zhu, Siu on Tung
-
Publication number: 20210231852Abstract: Material-Sensing Light Imaging, Detection, And Ranging (LIDAR) systems optionally include a laser configured to generate a light pulse, a beam steerer configured to produce a polarization-adjusted light pulse emitted towards an object, at least one polarizer configured to polarize reflected, scattered, or emitted light returned from the object, and a processor configured to detect at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object. The beam steerer may include a kirigami nanocomposite. Methods are also provided, including, for example, generating a light pulse, adjusting a polarization of the light pulse to produce a polarization-adjusted light pulse emitted towards an object, polarizing reflected, scattered, or emitted light returned from the object, and detecting at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object.Type: ApplicationFiled: April 15, 2021Publication date: July 29, 2021Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. KOTOV, Sharon GLOTZER, Brian SHAHBAZIAN, Ryan BRANCH, Lizhi XU, Wonjin CHOI, Minjeong CHA, Matthew SPELLINGS
-
Patent number: 10983219Abstract: Material-Sensing Light Imaging, Detection, And Ranging (LIDAR) systems optionally include a laser configured to generate a light pulse, a beam steerer configured to produce a polarization-adjusted light pulse emitted towards an object, at least one polarizer configured to polarize reflected, scattered, or emitted light returned from the object, and a processor configured to detect at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object. The beam steerer may include a kirigami nanocomposite. Methods are also provided, including, for example, generating a light pulse, adjusting a polarization of the light pulse to produce a polarization-adjusted light pulse emitted towards an object, polarizing reflected, scattered, or emitted light returned from the object, and detecting at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object.Type: GrantFiled: October 12, 2018Date of Patent: April 20, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Sharon Glotzer, Brian Shahbazian, Ryan Branch, Lizhi Xu, Wonjin Choi, Minjeong Cha, Matthew Spellings
-
Patent number: 10935432Abstract: Kirigami-based optic devices are provided that include a tunable kirigami-based component comprising a plurality of bridge structures and a plurality of openings therebetween to form a grating structure. At least one surface of the kirigami-based component is micropatterned with a plasmonic material so that the grating is configured to induce or modulate rotational polarity of a beam of electromagnetic radiation as it passes through the plurality of openings. In certain aspects, the micropattern may be a gold herringbone pattern. The kirigami-based component has tunable 3D topography, which when stretched, exhibits polarization rotation angles as high as 80° and ellipticity angles as high as 34° due to the topological equivalency of helix.Type: GrantFiled: July 22, 2019Date of Patent: March 2, 2021Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Theodore B. Norris, Gong Cheng, Wonjin Choi
-
Publication number: 20200386892Abstract: Material-Sensing Light Imaging, Detection, And Ranging (LIDAR) systems optionally include a laser configured to generate a light pulse, a beam steerer configured to produce a polarization-adjusted light pulse emitted towards an object, at least one polarizer configured to polarize reflected, scattered, or emitted light returned from the object, and a processor configured to detect at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object. The beam steerer may include a kirigami nanocomposite. Methods are also provided, including, for example, generating a light pulse, adjusting a polarization of the light pulse to produce a polarization-adjusted light pulse emitted towards an object, polarizing reflected, scattered, or emitted light returned from the object, and detecting at least one material of the object based on an intensity and polarization of the polarized reflected, scattered or emitted light from the object.Type: ApplicationFiled: October 12, 2018Publication date: December 10, 2020Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. KOTOV, Sharon GLOTZER, Brian SHAHBAZIAN, Ryan BRANCH, Lizhi XU, Wonjin CHOI, Minjeong CHA, Matthew SPELLINGS
-
Patent number: 10795186Abstract: Optical materials for optical devices are provided that comprise a plurality of hedgehog-shaped microparticles. Each hedgehog microparticle comprises a core region formed of a first material having a first refractive index and a plurality of needles connected to and substantially orthogonal to a surface of the core region. The needles comprise a second material having a second refractive index. The optical material enhances forward scattering of a predetermined wavelength of light, while suppressing backscattering of the predetermined wavelength of light. Methods of controlling transparency in an optical material comprising a plurality of hedgehog microparticles, while suppressing backscattering are also provided. Spectral tuning with use of such optical materials is also provided.Type: GrantFiled: November 29, 2017Date of Patent: October 6, 2020Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. Kotov, Joong Hwan Bahng
-
Patent number: 10743786Abstract: The present disclosure provides a method of fabricating an implantable micro-component electrode. The method includes disposing an electrically non-conductive material directly onto a surface of an electrically conductive carbon fiber core to generate an electrically non-conductive coating on the electrically conductive carbon fiber core, and removing a portion of the electrically non-conductive coating to expose a region of the electrically conductive carbon fiber core. The micro-component electrode has at least one dimension of less than or equal to about 10 ?m.Type: GrantFiled: February 19, 2018Date of Patent: August 18, 2020Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Daryl R. Kipke, Takashi Daniel Yoshida Kozai, Nick Langhals, Joerg Lahann, Nicholas A. Kotov, Xiaopei Deng, Paras Patel
-
Publication number: 20200254527Abstract: Self-assembly methods are provided for making hedgehog-shaped microparticles or nanoparticles. The method may comprise combining a metal-containing (e.g., Fe, Au) precursor, a chalcogen-containing precursor (e.g., Se, S), and a self-assembly additive (e.g., dodecanethiol (DT), oleylamine (OLA), hexadecyltrimethylammonium bromide (CTAB)). At least one hedgehog-shaped nanoscale, mesoscale, or microscale particle is formed that defines a core region formed of a first material and a plurality of needles connected to and substantially orthogonal to a surface of the core region. The needles comprise a second material. At least one of the first or the second material comprises iron or gold and optionally selenium or sulfur, for example, iron diselenide (FeSe2). Hedgehog-shaped microparticles or nanoparticles formed from such self-assembly methods are also provided.Type: ApplicationFiled: September 27, 2018Publication date: August 13, 2020Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Nicholas A. KOTOV, Dawei DENG, Wenfeng JIANG, Douglas MONTJOY