Patents by Inventor Nicholas A. Lanzillo

Nicholas A. Lanzillo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10319629
    Abstract: Semiconductor devices including skip via structures and methods of forming the skip via structure include interconnection between two interconnect levels that are separated by at least one other interconnect level, i.e., skip via to connect Mx and Mx+2 interconnect levels, wherein a portion of the intervening metallization level (MX+1) is in a pathway of the skip via.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: June 11, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Lawrence A. Clevenger, Brent A. Anderson, Nicholas A. Lanzillo
  • Publication number: 20190165042
    Abstract: A magnetic random access memory (MRAM) device includes a conductor disposed in an insulating material of a lower wiring layer, a magnetic tunnel junction (MTJ) structure formed in an upper wiring layer, and a landing pad formed in an intermediary wiring layer between the lower and upper wiring layers, the landing pad extending from a top surface of the conductor to a height above the intermediary wiring layer, wherein the landing pad connects the MJT structure to the conductor.
    Type: Application
    Filed: February 1, 2019
    Publication date: May 30, 2019
    Inventors: Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Publication number: 20190122911
    Abstract: One or more processors determine a predicted sorting bin of a semiconductor device, based on measurement and test data performed on the semiconductor device subsequent to a current metallization layer. A current predicted sorting bin and a target soring bin are determined by a machine learning model for the semiconductor device; the target bin include higher performance semiconductor devices than the predicted sorting bin. The model determines a performance level improvement attainable by adjustments made to process parameters of subsequent metallization layers of the semiconductor device. Adjustments to process parameters are generated, based on measurement and test data of the current metallization layer of semiconductor device, and the adjustment outputs for the process parameters of the subsequent metallization layers of the semiconductor device are made available to the one or more subsequent metallization layer processes by a feed-forward mechanism.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James Stathis
  • Patent number: 10256191
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo
  • Patent number: 10243020
    Abstract: A magnetic random access memory (MRAM) device includes a conductor disposed in an insulating material of a lower wiring layer, a magnetic tunnel junction (MTJ) structure formed in an upper wiring layer, and a landing pad formed in an intermediary wiring layer between the lower and upper wiring layers, the landing pad extending from a top surface of the conductor to a height above the intermediary wiring layer, wherein the landing pad connects the MJT structure to the conductor.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: March 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Patent number: 10211155
    Abstract: Methods are provided for fabricating metallic interconnect structures having reduced electrical resistivity that is obtained by applying mechanical strain to the metallic interconnect structures, as well as semiconductor structures having metallic interconnect structures formed with permanent mechanical strain to provide reduced electrical resistivity. For example, a method includes forming a metallic interconnect structure in an interlevel dielectric (ILD) layer of a back-end-of-line (BEOL) structure of a semiconductor structure, and forming a stress layer in contact with the metallic interconnect structure. A thermal anneal process is performed to cause the stress layer to expand and apply compressive strain to the metallic interconnect structure and permanently deform at least a portion of the metallic interconnect structure into a stress memorized state of compressive strain.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: February 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Publication number: 20190013278
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo
  • Publication number: 20180328977
    Abstract: Embodiments of the invention are directed to a semiconductor wafer test system. A non-limiting example of the test system includes a controller, a sensing system communicatively coupled to the controller, and a stress source communicatively coupled to the controller. The controller is configured to control the stress source to deliver an applied stress to a targeted stress area of a semiconductor wafer. The sensing system is configured to detect the applied stress and provide data of the applied stress to the controller. The controller is further configured to control the stress source based at least in part on the data of the applied stress.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James H. Stathis
  • Publication number: 20180328979
    Abstract: Embodiments of the invention are directed to a semiconductor wafer test system. A non-limiting example of the test system includes a controller, a sensing system communicatively coupled to the controller, and a stress source communicatively coupled to the controller. The controller is configured to control the stress source to deliver an applied stress to a targeted stress area of a semiconductor wafer. The sensing system is configured to detect the applied stress and provide data of the applied stress to the controller. The controller is further configured to control the stress source based at least in part on the data of the applied stress.
    Type: Application
    Filed: November 6, 2017
    Publication date: November 15, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert, James H. Stathis
  • Publication number: 20180277482
    Abstract: Methods are provided for fabricating metallic interconnect structures having reduced electrical resistivity that is obtained by applying mechanical strain to the metallic interconnect structures, as well as semiconductor structures having metallic interconnect structures formed with permanent mechanical strain to provide reduced electrical resistivity. For example, a method includes forming a metallic interconnect structure in an interlevel dielectric (ILD) layer of a back-end-of-line (BEOL) structure of a semiconductor structure, and forming a stress layer in contact with the metallic interconnect structure. A thermal anneal process is performed to cause the stress layer to expand and apply compressive strain to the metallic interconnect structure and permanently deform at least a portion of the metallic interconnect structure into a stress memorized state of compressive strain.
    Type: Application
    Filed: November 13, 2017
    Publication date: September 27, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Publication number: 20180269383
    Abstract: Techniques for preventing switching of spins in a magnetic tunnel junction by stray magnetic fields using a thin film magnetic shield are provided. In one aspect, a method of forming a magnetic tunnel junction includes: forming a stack on a substrate, having a first magnetic layer, a tunnel barrier, and a second magnetic layer; etching the stack to partially pattern the magnetic tunnel junction in the stack, wherein the etching includes patterning the magnetic tunnel junction through the second magnetic layer, the tunnel barrier, and partway through the first magnetic layer; depositing a first spacer and a magnetic shield film onto the partially patterned magnetic tunnel junction; etching back the magnetic shield film and first spacer; complete etching of the magnetic tunnel junction through the first magnetic layer to form a fully patterned magnetic tunnel junction; and depositing a second spacer onto the fully patterned magnetic tunnel junction.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 20, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Publication number: 20180211920
    Abstract: A semiconductor device is provided and includes first and second dielectrics, first and second conductive elements, a self-formed-barrier (SFB) and a liner. The first and second dielectrics are disposed with one of first-over-second dielectric layering and second-over-first dielectric layering. The first and second conductive elements are respectively suspended at least partially within a lower one of the first and second dielectrics and at least partially within the other one of the first and second dielectrics. The self-formed-barrier (SFB) is formed about a portion of one of the first and second conductive elements which is suspended in the second dielectric. The liner is deposited about a portion of the other one of the first and second conductive elements which is partially suspended in the first dielectric.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 26, 2018
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Takeshi Nogami, Christopher J. Penny, Michael Rizzolo
  • Patent number: 9985199
    Abstract: Techniques for preventing switching of spins in a magnetic tunnel junction by stray magnetic fields using a thin film magnetic shield are provided. In one aspect, a method of forming a magnetic tunnel junction includes: forming a stack on a substrate, having a first magnetic layer, a tunnel barrier, and a second magnetic layer; etching the stack to partially pattern the magnetic tunnel junction in the stack, wherein the etching includes patterning the magnetic tunnel junction through the second magnetic layer, the tunnel barrier, and partway through the first magnetic layer; depositing a first spacer and a magnetic shield film onto the partially patterned magnetic tunnel junction; etching back the magnetic shield film and first spacer; complete etching of the magnetic tunnel junction through the first magnetic layer to form a fully patterned magnetic tunnel junction; and depositing a second spacer onto the fully patterned magnetic tunnel junction.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert
  • Patent number: 9941211
    Abstract: Methods are provided for fabricating metallic interconnect structures having reduced electrical resistivity that is obtained by applying mechanical strain to the metallic interconnect structures, as well as semiconductor structures having metallic interconnect structures formed with permanent mechanical strain to provide reduced electrical resistivity. For example, a method includes forming a metallic interconnect structure in an interlevel dielectric (ILD) layer of a back-end-of-line (BEOL) structure of a semiconductor structure, and forming a stress layer in contact with the metallic interconnect structure. A thermal anneal process is performed to cause the stress layer to expand and apply compressive strain to the metallic interconnect structure and permanently deform at least a portion of the metallic interconnect structure into a stress memorized state of compressive strain.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Nicholas A. Lanzillo, Michael Rizzolo, Theodorus E. Standaert