Patents by Inventor Nicholas A. Melosh

Nicholas A. Melosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10150947
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: December 11, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jules J. Vandersarl, Alexander M. Xu, Nicholas A. Melosh, Noureddine Tayebi
  • Publication number: 20160201030
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.
    Type: Application
    Filed: January 8, 2016
    Publication date: July 14, 2016
    Inventors: Jules J. VANDERSARL, Alexander M. XU, Nicholas A. MELOSH, Noureddine TAYEBI
  • Patent number: 9266725
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 23, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jules J. VanDersarl, Alexander M. Xu, Nicholas A. Melosh, Noureddine Tayebi
  • Patent number: 8853531
    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200° C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: October 7, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jared Schwede, Nicholas Melosh, Zhixun Shen
  • Publication number: 20130336873
    Abstract: Methods of growing diamond and resulting diamond nanoparticles and diamond films are described herein. An example of a method of growing diamond includes: (1) anchoring diamondoids to a substrate via chemical bonding between the diamondoids and the substrate; (2) forming a protective layer over the diamondoids; and (3) performing chemical vapor deposition using a carbon source to induce diamond growth over the protective layer and the diamondoids.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Inventors: Hitoshi Ishiwata, Zhi-Xun Shen, Nicholas A. Melosh, Jeremy Dahl
  • Patent number: 8569941
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 29, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Publication number: 20120276573
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jules J. VanDersarl, Alexander M. Xu, Nicholas A. Melosh
  • Publication number: 20120212153
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 23, 2012
    Applicants: The Regents of the University of California, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Wanli YANG, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Patent number: 8154185
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: April 10, 2012
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Publication number: 20110308605
    Abstract: Provided is a fluorescent diamondoid material which when energized, either by an electric field or by high energy radiation, emits light. The light emitted is generally in the visible range. The diamondoid material can be fine tuned by internal or external doping. The fluorescent materials comprised of diamondoids, have applications in several fields. One application is in solar cells where these materials can be used to improve the overall efficiency of the device. A second application is in indoor lighting where the materials can be used to efficiently produce white light. This can be done by either using the material as a fluorescent medium for a UV light source, in an electroluminescence device, or by using the material as part of an organic light emitting diode (OLED).
    Type: Application
    Filed: January 30, 2009
    Publication date: December 22, 2011
    Applicants: Justus-Liebig-Universitaet Giessen, Leland J. Stanford Junior Univesity
    Inventors: Zhi Liu, Will Clay, Michael A. Kelly, Nicholas A. Melosh, Zhi-Xun Shen, Andrey A. Fokin, Peter R. Schreiner
  • Publication number: 20110082053
    Abstract: Provided is a molecular rectifier comprised of a diamondoid molecule and an electron acceptor attached to the diamondoid molecule. The electron acceptor is generally an electron accepting aromatic species which is covalently attached to the diamondoid.
    Type: Application
    Filed: January 30, 2009
    Publication date: April 7, 2011
    Inventors: Wanli Yang, Zhi-Xun Shen, Harindran C. Manoharan, Nicholas A. Melosh, Michael A. Kelly, Andrey A. Fokin, Peter R. Schreiner, Jason C. Randel
  • Patent number: 7906775
    Abstract: Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: March 15, 2011
    Assignee: California Institute of Technology
    Inventors: James R. Heath, Pierre M. Petroff, Nicholas A. Melosh
  • Publication number: 20100258785
    Abstract: Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.
    Type: Application
    Filed: December 4, 2006
    Publication date: October 14, 2010
    Applicant: California Institute of Technology
    Inventors: James R. Heath, Pierre M. Petroff, Nicholas A. Melosh
  • Publication number: 20100139771
    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200° C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
    Type: Application
    Filed: October 16, 2009
    Publication date: June 10, 2010
    Inventors: Jared Schwede, Nicholas Melosh, Zhixun Shen
  • Publication number: 20080191598
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Applicants: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Patent number: 7161168
    Abstract: Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: January 9, 2007
    Assignee: The Regents of the University of California
    Inventors: James R. Heath, Pierre M. Petroff, Nicholas A. Melosh
  • Publication number: 20050250276
    Abstract: Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.
    Type: Application
    Filed: July 28, 2003
    Publication date: November 10, 2005
    Inventors: James Heath, Pierre Petroff, Nicholas Melosh
  • Patent number: 6952436
    Abstract: A method for preparing transparent mesostructured inorganic/block-copolymer composites or inorganic porous solids containing optically responsive species with selective optical, optoelectronic, and sensing properties resulting therefrom. Mesoscopically organized inorganic/block copolymer composites doped with dyes or complexes are prepared for use as optical hosts, chemical/physical/biological sensors, photochromic materials, optical waveguides, tunable solid-state lasers, or optoelectronic devices. The materials can be processed into a variety of different shapes, such as films, fibers, monoliths, for novel optical and sensing applications.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: October 4, 2005
    Assignee: Regents of the University of California
    Inventors: Gernot Wirnsberger, Brian J. Scott, Howard C. Huang, Nicholas A. Melosh, Peidong Yang, Bradley F. Chmelka, Galen D. Stucky
  • Publication number: 20020065366
    Abstract: A method for preparing transparent mesostructured inorganic/block-copolymer composites or inorganic porous solids containing optically responsive species with selective optical, optoelectronic, and sensing properties resulting therefrom. Mesoscopically organized inorganic/block copolymer composites doped with dyes or complexes are prepared for use as optical hosts, chemical/physical/biological sensors, photochromic materials, optical waveguides, tunable solid-state lasers, or optoelectronic devices. The materials can be processed into a variety of different shapes, such as films, fibers, monoliths, for novel optical and sensing applications.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 30, 2002
    Inventors: Gernot Wirnsberger, Brian J. Scott, Howard C. Huang, Nicholas A. Melosh, Peidong Yang, Bradley F. Chmelka, Galen D. Stucky