Patents by Inventor Nicholas C. Erickson
Nicholas C. Erickson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12263656Abstract: Materials and methods useful in forming nano-scale features on substrates, and articles such as optical films incorporating such nano-scale patterned substrates.Type: GrantFiled: November 8, 2019Date of Patent: April 1, 2025Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Henrik B. van Lengerich, Karl K. Stensvad, Edwin L Kusilek, Matthew S. Stay, Caleb T. Nelson, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Martin B. Wolk, Nicholas C. Erickson, James Zhu, James M. Nelson
-
Publication number: 20240411061Abstract: A light control film includes a two-dimensional array of projections arranged across the light control film. A square of a magnitude of a Fourier transform frequency spectrum of the projections includes a plurality of distinct peaks separated by one or more valleys. The peaks and the one or more valleys have respective averages Pavg and Vavg, Pavg/Vavg?5, such that when light from a substantially Lambertian light source is incident on the light control film, the light control film transmits the incident light with the transmitted light propagating along a transmission axis and having an intensity profile having a full width at half maximum of less than about 120 degrees in each cross-section of the intensity profile that comprises the transmission axis.Type: ApplicationFiled: October 17, 2022Publication date: December 12, 2024Inventors: Raymond J. Kenney, Yehuda E. Altabet, John M. DeSutter, Kenneth A.P. Meyer, Nicholas C. Erickson, Martin B. Wolk, James M. Nelson, Daniel J. Schmidt, Caleb T. Nelson
-
Patent number: 12161013Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: GrantFiled: September 16, 2020Date of Patent: December 3, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Patent number: 12133415Abstract: An organic light emitting diode (OLED) display is described, and includes a pixelated OLED display panel including N a plurality of pixels, each pixel including a plurality of subpixels, and each subpixel including a plurality of OLED layers. A hybrid color correction component is disposed on the pixelated OLED display panel, and the hybrid color-correction component includes a nanostructured interface and an angular transformation layer, the angular transformation layer is disposed between the nanostructured interface and the pixelated OLED display panel.Type: GrantFiled: March 24, 2020Date of Patent: October 29, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Stephen M. Menke, Nicholas C. Erickson, Jathan D. Edwards
-
Publication number: 20240288703Abstract: A light control layer includes alternating transmissive and absorptive regions, along one or two dimensions. The light control layer may be substantially transparent, or have high transmission, for light incident at or near a normal angle to its surface, while absorbing light incident at angles away from normal. The height of the absorptive region, defined orthogonal to the local display surface, may be much greater than the width of the absorptive region resulting in a high aspect ratio structure. The width of the absorptive region may be relatively thin compared to the width of a pixel in a display. The light control layer may be applied to a display or incorporated into a display. The light control layer may be part of a film stack including other functional layers that cooperatively provide desirable optical properties.Type: ApplicationFiled: September 23, 2022Publication date: August 29, 2024Inventors: Nicholas C. Erickson, Raymond J. Kenney, Daniel J. Schmidt, Brett J. Sitter, Kevin W. Gotrik, Stephen M. Menke, Jathan D. Edwards
-
Publication number: 20240280737Abstract: An organic light emitting diode (OLED) display includes a pixelated OLED display panel and a color-correction component disposed on the pixelated OLED display panel. The pixelated OLED display panel has a ratio of blue-to-red color mixing weights at 30 degrees of ?030, and a ratio of blue-to-red color mixing weights at 45 degrees of ?045, where ?045??030?1.05 and 1.5??045?1.1. The color-correction component is configured such that a ratio of blue-to-red color mixing weights at 45 degrees of the display is ?45 and a ratio of blue-to-red color mixing weights at 30 degrees of the display is ?30, where ?045?0.1??45?2.1??045 and ?030?0.05??30?2.05??030. Methods of making OLED displays are described.Type: ApplicationFiled: April 30, 2024Publication date: August 22, 2024Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Patent number: 12007593Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.Type: GrantFiled: April 9, 2019Date of Patent: June 11, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Nicholas C. Erickson, David G. Freier, Robert L Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt, Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Publication number: 20230400608Abstract: An optically diffusive film includes a structured first major surface with a plurality of substantially parallel, substantially planar first surfaces arranged across the first major surface at a plurality of different first height levels. A height difference between any two of the first surfaces is S times Hmin, where S is a number within 15% of an integer and Hmin is a height difference between lowest and next-lowest first surfaces. For a substantially collimated incident light and for a first wavelength in a human-visible wavelength range, the optically diffusive film has an optical haze, Hv, and an optical clarity, Cv, and for a second wavelength in an infrared wavelength range, the optically diffusive film has an optical haze, Hi, and an optical clarity, Ci, such that the ratio Hv/Hi is greater than or equal to 1.5 and the ratio Ci/Cv is greater than or equal to 1.5.Type: ApplicationFiled: October 1, 2021Publication date: December 14, 2023Inventors: Steven H. Kong, Nicholas C. Erickson, David A. Rosen
-
Publication number: 20230331928Abstract: A hyperbranched polymer comprising a reaction product of a hydrosilylation reaction catalyst and components a) and b), which combined contain 15 to 60 percent by weight of aromatic carbon atoms. Component a) is at least one first organosilane independently having p vinyl groups and consisting of C, H, Si, and optionally O atoms, wherein each p is independently an integer greater than or equal to 2. Component b) is at least one second organosilane independently having q Si—H groups and consisting of C, H, Si, and optionally O atoms, wherein each q is independently an integer greater than or equal to 2. p/q is at least 3.1. A curable composition comprises the hyperbranched polymer and a crosslinker system. An at least partially reaction product of the curable composition and N electronic articles including the same are also disclosed.Type: ApplicationFiled: August 10, 2021Publication date: October 19, 2023Inventors: Claire Hartmann-Thompson, Nicholas C. Erickson, Stephen M. Menke
-
Publication number: 20230314676Abstract: A display includes a pixelated emission surface including a plurality of blue, green and red light emitting pixels having emission peaks at respective blue, green and red peak wavelengths. The display includes a plurality of blue light emitting sources aligned to the plurality of blue, green and red light emitting pixels in a one-to-one correspondence. An optical film is disposed between the emission surface and the plurality of blue light emitting sources. Each region of the optical film that is disposed between a blue light emitting source and the corresponding blue light emitting pixel transmits at least 70% of substantially normally incident light having the blue peak wavelength. Each region of the optical film that is disposed between a blue light emitting source and the corresponding green or red light emitting pixel reflects at least 50% of substantially normally incident light having the blue peak wavelength.Type: ApplicationFiled: August 11, 2021Publication date: October 5, 2023Inventors: Stephen M. Menke, Gilles J.B. Benoit, Adam D. Haag, Kevin W. Gotrik, Nicholas C. Erickson
-
Publication number: 20230127519Abstract: The present disclosure provides an article including either at least two layers each having at least one enclosed void that is defined in part by nanostructured surfaces, or a layer having at least one enclosed void that is defined by two nanostructured surfaces in contact with each other. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the presence of another layer.Type: ApplicationFiled: April 13, 2021Publication date: April 27, 2023Inventors: Jeffrey L. Solomon, Stephen M. Menke, Nicholas C. Erickson, Daniel W. Hennen, Derek W. Patzman, Thomas P. Klun
-
Publication number: 20220271261Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: ApplicationFiled: September 16, 2020Publication date: August 25, 2022Inventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A. Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P. Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Publication number: 20220231095Abstract: An organic light emitting diode (OLED) display is disclosed. The OLED display includes a first stack having a first emission layer and a first layer. The first emission layer emits red light, green light, or blue light. The OLED display includes a second stack having a second emission layer and a second layer. The second stack emits light of a different angular spectral distribution as that emitted by the first stack. Further, a thickness of the second layer is different from a thickness of the first layer such that light emitted by the first emission layer resonates within the first stack at a first degree and light emitted by the second emission layer resonates within the second stack at a second degree, the first degree being greater than the second degree.Type: ApplicationFiled: May 7, 2020Publication date: July 21, 2022Inventors: Nicholas C. ERICKSON, Stephen M. MENKE
-
Publication number: 20220123267Abstract: An organic light emitting diode (OLED) display is described, and includes a pixelated OLED display panel including N a plurality of pixels, each pixel including a plurality of subpixels, and each subpixel including a plurality of OLED layers. A hybrid color correction component is disposed on the pixelated OLED display panel, and the hybrid color-correction component includes a nanostructured interface and an angular transformation layer, the angular transformation layer is disposed between the nanostructured interface and the pixelated OLED display panel.Type: ApplicationFiled: March 24, 2020Publication date: April 21, 2022Inventors: Stephen M. Menke, Nicholas C. Erickson, Jathan D. Edwards
-
Publication number: 20210389503Abstract: Nanostructured articles, materials for the nanostructured articles, and intermediate articles for use in making the nanostructured articles. The nanostructured articles can be formed on a flexible film and are useful for optical metasurface applications and possibly other applications. The articles can include nanoreplicated layers or pattern transfer layers of engineered nanostructures.Type: ApplicationFiled: November 7, 2019Publication date: December 16, 2021Inventors: Martin B. Wolk, James M. Nelson, Karl K. Stensvad, Henrik B. van Lengerich, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Nicholas C. Erickson, Caleb T. Nelson
-
Publication number: 20210347135Abstract: Materials and methods useful in forming nano-scale features on substrates, and articles such as optical films incorporating such nano-scale patterned substrates.Type: ApplicationFiled: November 8, 2019Publication date: November 11, 2021Inventors: Henrik B. van Lengerich, Karl K. Stensvad, Edwin L. Kusilek, Mathew S. Stay, Caleb T. Nelson, Christopher S. Lyons, Moses M. David, Jeffrey L. Solomon, Martin B. Wolk, Nicholas C. Erickson, James Zhu, James M. Nelson
-
Publication number: 20210098546Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.Type: ApplicationFiled: April 9, 2019Publication date: April 1, 2021Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Song Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Patent number: 10756306Abstract: A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.Type: GrantFiled: October 17, 2017Date of Patent: August 25, 2020Assignee: 3M Innovative Properties CompanyInventors: Nicholas C. Erickson, Moses M. David, Xiaoguang Sun, Manoj Nirmal, Haeen Sykora, Hui Luo, Samuel J. Carpenter, Jilliann M. Nelson, Justin P. Meyer, Bert T. Chien, David J. Rowe, Robert L. Brott, David G. Freier, Hyacinth L. Lechuga
-
Publication number: 20190386251Abstract: A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.Type: ApplicationFiled: October 17, 2017Publication date: December 19, 2019Inventors: Nicholas C. Erickson, Moses M. David, Xiaoguang Sun, Manoj Nirmal, Haeen Sykora, Hui Luo, Samuel J. Carpenter, Jilliann M. Nelson, Justin P. Meyer, Bert T. Chien, David J. Rowe, Robert L. Brott, David G. Freier, Hyacinth L. Lechuga
-
Patent number: 10475858Abstract: The present disclosure describes nanostructured light extraction color filter laminates, and articles and methods of using nanostructured light extraction color filter laminates for the fabrication of an OLED including a nanostructure, using lamination techniques. Nanostructured OLED devices can exhibit enhanced light extraction efficiency. The methods involve transfer and/or replication of a film, layer, or coating in order to form a nanostructured surface that is in optical contact with the emitting surface of an OLED in, for example, a top emitting or a bottom emitting active matrix OLED (TE-AMOLED or BE-AMOLED) device. The articles having enhanced light extraction efficiency can be of particular use in color-by-white (CBW) OLED displays, which use white-light spectrum OLEDs with a color filter array.Type: GrantFiled: June 7, 2018Date of Patent: November 12, 2019Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Martin B. Wolk, Seong Taek Lee, Michael Benton Free, Nicholas C. Erickson