Patents by Inventor Nicholas CALTA

Nicholas CALTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11655185
    Abstract: A method is disclosed of making a coated optical fiber. The method may involve drawing a preform through a furnace to create a fiber having a desired diameter and cross sectional shape. The fiber is then drawn through a slurry, wherein the slurry includes elements including at least one of metallic elements, alloy elements or dielectric elements, and the slurry wets an outer surface of the fiber. As the fiber is drawn through the slurry, it is then drawn through a forming die to impart a wet coating having a desired thickness on an outer surface of the fiber. The wet fiber is then drawn through an oven or ovens configured to heat the wet coating sufficiently to produce a consolidated surface coating on the fiber as the fiber exits the oven or ovens.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: May 23, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael Messerly, Nicholas Calta, Selim Elhadj, Andrew Lange, Cody Wren Mart, Robert Mellors, Nick Schenkel, Charles Xiao Yu
  • Publication number: 20200354269
    Abstract: A method is disclosed of making a coated optical fiber. The method may involve drawing a preform through a furnace to create a fiber having a desired diameter and cross sectional shape. The fiber is then drawn through a slurry, wherein the slurry includes elements including at least one of metallic elements, alloy elements or dielectric elements, and the slurry wets an outer surface of the fiber. As the fiber is drawn through the slurry, it is then drawn through a forming die to impart a wet coating having a desired thickness on an outer surface of the fiber. The wet fiber is then drawn through an oven or ovens configured to heat the wet coating sufficiently to produce a consolidated surface coating on the fiber as the fiber exits the oven or ovens.
    Type: Application
    Filed: April 3, 2020
    Publication date: November 12, 2020
    Inventors: Michael MESSERLY, Nicholas CALTA, Selim ELHADJ, Andrew LANGE, Cody Wren MART, Robert MELLORS, Nick SCHENKEL, Charles Xiao YU
  • Patent number: 10564039
    Abstract: The present disclosure relates to an apparatus for simulating a black body spectrum. The apparatus makes use of a broadband light source and a light guide configured to receive light generated by the light source and to generate first and second optical signals. A first signal processing subsystem may be used to enable adjustment of both a signal spectrum and an intensity of the first optical signal. A second signal processing subsystem may be used to enable adjustment of both a signal spectrum and an intensity of the second optical signal. A beam cube may be used to combine the first and second optical signals to produce a final light output signal having a desired signal spectrum and a desired intensity.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: February 18, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Nicholas Calta, Gabe Guss, Manyalibo Joseph Matthews
  • Publication number: 20190094076
    Abstract: The present disclosure relates to an apparatus for simulating a black body spectrum. The apparatus makes use of a broadband light source and a light guide configured to receive light generated by the light source and to generate first and second optical signals. A first signal processing subsystem may be used to enable adjustment of both a signal spectrum and an intensity of the first optical signal. A second signal processing subsystem may be used to enable adjustment of both a signal spectrum and an intensity of the second optical signal. A beam cube may be used to combine the first and second optical signals to produce a final light output signal having a desired signal spectrum and a desired intensity.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Nicholas CALTA, Gabe GUSS, Manyalibo Joseph MATTHEWS