Patents by Inventor Nicholas Daniel Trail

Nicholas Daniel Trail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180058844
    Abstract: A depth camera assembly (DCA) determines distances between the DCA and objects in a local area within a field of view of the DCA. The DCA includes an illumination source that projects a known spatial pattern modulated with a temporal carrier signal into the local area. An imaging device capture the modulated pattern projected into the local area. The imaging device includes a detector that comprises different pixel groups that are each activated to captured light at different times. Hence, different pixel groups capture different phases of the temporally modulated pattern from the local area. The DCA determines times for light from the illumination source to be reflected and captured by the imaging device from the phases captured by the different pixel groups and also determines distances between the DCA and objects in the local area based on deformation of the spatial pattern captured by the imaging device.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 1, 2018
    Inventor: Nicholas Daniel Trail
  • Publication number: 20180063508
    Abstract: A depth camera assembly (DCA) captures data describing depth information in a local area. The DCA includes an array detector, a controller, and an illumination source. The array detector includes a detector that is overlaid with a lens array. The detector includes a plurality of pixels, the plurality of pixels are divided into a plurality of different pixel groups. The lens array includes a plurality of lens stacks and each lens stack overlays a different pixel group. The array detector captures one or more composite images of the local area illuminated with the light from the illumination source. The controller determines depth information for objects in the local area using the one or more composite images.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 1, 2018
    Inventors: Nicholas Daniel Trail, Renzo De Nardi, Richard Andrew Newcombe
  • Publication number: 20180048880
    Abstract: A depth camera assembly (DCA) that captures data describing depth information in a local area. The DCA includes an imaging device, a controller, and an illumination source. The illumination source includes a plurality of emitters on a single substrate. The imaging device captures one or more images of the local area illuminated with the light from the illumination source. The controller determines depth information for objects in the local area using the one or more images.
    Type: Application
    Filed: August 9, 2016
    Publication date: February 15, 2018
    Inventors: Nicholas Daniel Trail, Renzo De Nardi, Richard Andrew Newcombe
  • Patent number: 9858672
    Abstract: A depth camera assembly (DCA) determines distances between the DCA and objects in a local area within a field of view of the DCA. The DCA includes an illumination source that projects a known spatial pattern modulated with a temporal carrier signal into the local area. An imaging device capture the modulated pattern projected into the local area. The imaging device includes a detector that comprises different pixel groups that are each activated to captured light at different times. Hence, different pixel groups capture different phases of the temporally modulated pattern from the local area. The DCA determines times for light from the illumination source to be reflected and captured by the imaging device from the phases captured by the different pixel groups and also determines distances between the DCA and objects in the local area based on deformation of the spatial pattern captured by the imaging device.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: January 2, 2018
    Assignee: Oculus VR, LLC
    Inventor: Nicholas Daniel Trail
  • Publication number: 20170293146
    Abstract: An auto-focus head-mounted display (HMD) dynamically generates aberration-adjusted images based on measured accommodation of user's eye(s). An aberration-adjusted image is an image distorted to correct aberrations that would otherwise occur at a retina of the user due to image light passing through optics of the HMD. The aberration-adjusted image corrects the aberrations of the HMD and “accounts” for the aberrations of the eye so that the resulting retinal image is free of optical aberrations due to the HMD but preserves correct eye optical aberrations that are correlated with a current accommodative state of the eye.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: William Aaron Nicholls, Marina Zannoli, Douglas Robert Lanman, Nicholas Daniel Trail
  • Patent number: 9779478
    Abstract: A head-mounted display (HMD) divides an image into a high resolution (HR) inset portion at a first resolution, a peripheral portion, and a transitional portion. The peripheral portion is downsampled to a second resolution that is less than the first resolution. The transitional portion is blended such that there is a smooth change in resolution that corresponds to a change in resolution between a fovea region and a non-fovea region of a retina. An inset region is generated using the HR inset portion and the blended transitional portion, and a background region is generated using the downsampled peripheral portion. The inset region is provided to a HR inset display, and the background region is provided to a peripheral display. An optics block combines the displayed inset region with the displayed background region to generate composite content.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: October 3, 2017
    Assignee: Oculus VR, LLC
    Inventors: Austin Wilson, Douglas Robert Lanman, Nicholas Daniel Trail, Scott Charles McEldowney, Stephen James McNally, Yusufu Njoni Bamaxam Sulai
  • Publication number: 20170262054
    Abstract: A virtual reality (VR) headset adjusts the phase of light of a virtual scene received from a display element using a spatial light modulator (SLM) to accommodate changes in vergence for a user viewing objects in the virtual scene. The VR headset receives virtual scene data that includes depth information for components of the virtual scene and the SLM adjusts a wavefront of the light of the virtual scene by generating a phase function that adjusts the light of the virtual scene with phase delays based the depth values. Individual phase delays shift components of the virtual scene based on the depth values to a target focal plane to accommodate a user at a vergence depth for a frame of the virtual scene. Further, the SLM can provide optical defocus by shifting components of the virtual scene with the phase delays for depth of field blur.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Douglas Robert Lanman, Alexander Jobe Fix, Nathan Seigo Matsuda, Nicholas Daniel Trail
  • Publication number: 20170206660
    Abstract: A depth camera assembly (DCA) determines distances between the DCA and objects in a local area within a field of view of the DCA. The DCA includes an illumination source that projects a known spatial pattern modulated with a temporal carrier signal into the local area. An imaging device capture the modulated pattern projected into the local area. The imaging device includes a detector that comprises different pixel groups that are each activated to captured light at different times. Hence, different pixel groups capture different phases of the temporally modulated pattern from the local area. The DCA determines times for light from the illumination source to be reflected and captured by the imaging device from the phases captured by the different pixel groups and also determines distances between the DCA and objects in the local area based on deformation of the spatial pattern captured by the imaging device.
    Type: Application
    Filed: September 16, 2016
    Publication date: July 20, 2017
    Inventor: Nicholas Daniel Trail
  • Publication number: 20170195653
    Abstract: A depth camera assembly (DCA) determines depth information for a scene in a field of view of the DCA. The DCA includes a structured light (SL) illuminator, a camera, and a controller. The SL illuminator includes a source assembly, a SL element, a liquid crystal (LC) array, and a polarizer. The source assembly generates light, and the SL element generates a SL pattern using the generated light source. The LC array includes a plurality of addressable cells configured to polarize the SL pattern in accordance with adjustment instructions. The polarizer attenuates portions of the SL pattern based on the polarization of the portions of the SL pattern. The camera captures an image of the SL pattern, and the controller identifies portions of the image that are saturated and generates adjustment instructions based in part on the identified portions of the image, and provides the adjustment instructions to the LC array.
    Type: Application
    Filed: December 27, 2016
    Publication date: July 6, 2017
    Inventors: Nicholas Daniel Trail, Stephen James McNally
  • Publication number: 20170192499
    Abstract: A head-mounted display (HMD) presents content for viewing by users. The HMD includes a display element, an optics block, and a camera. The display element includes content pixels for providing light corresponding to the displayed content and one or more tracking pixels for providing tracking light used for tracking the user's eye movements. The optics block directs light from the display element (light corresponding to the displayed content and that of tracking light) to an exit pupil of the HMD. The camera captures one or images of an eye of the user in response to projecting tracking light on the eye, where the one or more captured images include a distortion of the projected tracking light and are used in determining an orientation of the eye at a time of capturing the one or more images of the eye.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Inventor: Nicholas Daniel Trail
  • Publication number: 20170180713
    Abstract: An augmented reality (AR) includes a depth camera assembly (DCA) to capture images of various depth zones of scenes of a local area. The DCA can focus on specific ranges in a scene, important aspects, and/or regions of interest. The DCA generates image data of the local area such that the image includes information pertaining to a single depth zone. The captured image is specific to the single depth zone and is representative of objects within the single depth zone. The DCA uses the generated image data for the depth zones to generate augmented or partially-augmented images that include depth information for the objects in the local area.
    Type: Application
    Filed: December 8, 2016
    Publication date: June 22, 2017
    Inventor: Nicholas Daniel Trail
  • Publication number: 20170139211
    Abstract: A head-mounted display (HMD) includes an electronic display element, a microlens array, and an optics block. The electronic display element outputs image light via sub-pixels having different colors, the sub-pixels separated from each other by a dark space region. The sub-pixels have associated emission distributions that describe ranges of angles of light emitted from the plurality of sub-pixels. The microlens array includes microlenses that are each coupled to at least one corresponding sub-pixel, of the sub-pixels, where the microlenses concentrate the emission distributions and direct the emission distributions toward a target region. The optics block, which is located in the target region optically corrects the image light and directs the optically corrected image light from the microlens array to an exit pupil of the HMD corresponding to a location of an eye of a user of the HMD.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 18, 2017
    Inventor: Nicholas Daniel Trail
  • Publication number: 20170134717
    Abstract: A an augmented reality (AR) headset includes a depth camera assembly that combines stereo imaging with structured light (SL) to generate depth information for an area of interest. The depth camera assembly includes at least two image capture devices and a SL illuminator and determines an imaging mode based on a signal to noise ratio or spatial variance of images captured by one or more of the cameras. Different imaging modes correspond to different operation of one or more image capture devices and the SL illuminator. The depth camera assembly includes different ranges of signal to noise ratios that each correspond to an imaging mode, and the depth camera assembly configures the image capture devices and the SL illuminator based on an imaging mode associated with a range of signal to noise ratios including the signal to noise ratio of a captured image.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 11, 2017
    Inventors: Nicholas Daniel Trail, Alexander Jobe Fix
  • Publication number: 20170123526
    Abstract: Disclosed is a system and method for tracking a user's eye using structured light. The structured light system is calibrated by training a model of surface of the user's eye. A structured light emitter projects a structured light pattern (e.g., infrared structured light) onto a portion of the surface of the eye. From the viewpoint of a camera, the illumination pattern appears distorted. Based on the distortion of the illumination pattern in the captured image, the eye tracking system can determine the shape of the portion of the user's eye that the structured light is incident upon. By comparing the determined shape of the portion of the user's eye to the model, the orientation of the eye may be determined. The eye tracking system or elements thereof may be part of a head-mounted display, e.g., as part of a virtual reality system.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: Nicholas Daniel Trail, Robert Dale Cavin