Patents by Inventor Nicholas Doudoumopoulos

Nicholas Doudoumopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7964453
    Abstract: The manufacturing methodology to produce polycrystalline silicon in time and cost efficient manner uses a spatially selective crystallization approach to greatly reduce the amount of energy delivered to the work surface. The amorphous silicon film is subjected to laser radiation substantially exclusively at localized areas where TFTs are to be formed. The source of radiation is a copper vapor laser which produces a highly stable radiation in a visible spectrum with an energy sufficient to convert amorphous silicon into polysilicon in 1-3 shots. The optic system delivers the homogenized, conditioned and focused laser beam to the area of interest in a controlled manner. Single or multi-laser beam arrangements, as well as different shapes and sizes of laser beam spots are contemplated.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: June 21, 2011
    Assignee: Potomac Photonics, Inc.
    Inventors: Nicholas Doudoumopoulos, Paul Christensen, Paul Wickboldt
  • Publication number: 20100291760
    Abstract: The manufacturing methodology to produce polycrystalline silicon in time and cost efficient manner uses a spatially selective crystallization approach to greatly reduce the amount of energy delivered to the work surface. The amorphous silicon film is subjected to laser radiation substantially exclusively at localized areas where TFTs are to be formed. The source of radiation is a copper vapor laser which produces a highly stable radiation in a visible spectrum with an energy sufficient to convert amorphous silicon into polysilicon in 1-3 shots. The optic system delivers the homogenized, conditioned and focused laser beam to the area of interest in a controlled manner. Single or multi-laser beam arrangements, as well as different shapes and sizes of laser beam spots are contemplated.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Inventors: Nicholas Doudoumopoulos, Paul Christensen, Paul Wickboldt
  • Patent number: 7799666
    Abstract: A method utilizing spatially selective laser doping for irradiating predetermined portions of a substrate of a semiconductor material is disclosed. Dopants are deposited onto the surface of a substrate. A pulsed, visible beam is directed to and preferentially absorbed by the substrate only in those regions requiring doping. Spatial modes of the incoherent beam are overlapped and averaged, providing uniform irradiation requiring fewer laser shots. The beam is then focused to the predetermined locations of the substrate for implantation or activation of the dopants. The method provides for scanning and focusing of the beam across the substrate surface, and irradiation of multiple locations using a plurality of beams. The spatial selectivity, combined with visible laser wavelengths, provides greater efficiency in doping only desired substrate regions, while reducing the amount of irradiation required.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 21, 2010
    Assignee: Potomac Photonics, Inc.
    Inventors: Nicholas A. Doudoumopoulos, C. Paul Christensen, Paul Wickboldt
  • Patent number: 6740870
    Abstract: A photosensitive chip element is mounted in a totally clear package. The incoming fight can pass through the package at any angle. The incoming light passed through the package is sensed by the photosensor and converted to a signal indicative thereof. Since the package is clear, no special way of mounting the chip is necessary.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: May 25, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Nicholas A. Doudoumopoulos
  • Patent number: 6429036
    Abstract: A CMOS image sensor die is fabricated and packaged to allow the light sensitive area of the die to be illuminated from either the front side or the backside, or both. The implementation is achieved using wafer level processing that facilitates photon collection at both surfaces. This approach permits processing apt the wafer level to allow the deposition of color filter arrays (CFA) on either surface. The silicon is thinned and the bump contacts and interconnect lines are relocated away from the image area of the die. The die is covered with an optically transparent material to provide additional support.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: August 6, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Robert Nixon, Nicholas Doudoumopoulos, Eric R. Fossum
  • Patent number: 5828078
    Abstract: The present invention presents an electrostatic discharge and power surge protected circuit board (10) and method for providing an electrostatic discharge and power surge protected circuit board. The protected circuit board (10) includes temperature sensitive conducting material (14) and semiconductor circuit components (12). The temperature sensitive conducting material (14) has a critical current density, provides a high impedance when the critical current density is exceeded, and preferably comprises a high temperature superconductor. Preferably, the temperature sensitive conducting material (14) and the semiconductor circuit components (12) are coupled in series. In a method aspect of the present invention, an electrostatic discharge protected circuit board (10) is provided by providing a current carrying mechanism (16) on the circuit board (10), and coupling the current carrying mechanism (16) to temperature sensitive conducting material (14).
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: October 27, 1998
    Assignee: Hughes Electronics
    Inventor: Nicholas A. Doudoumopoulos