Patents by Inventor Nicholas Gee

Nicholas Gee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9176125
    Abstract: Disclosed is a method for indirectly coupling a small molecule ligand to a molecule to be labelled with the ligand, the method comprising the step of: contacting a scaffold molecule, to which is attached at least one small molecule ligand, with the molecule to be labelled, the scaffold molecule having at least one group which is reactive towards a receiver moiety present or formed in situ on the molecule to be labelled, so as to forma bond between the scaffold molecule and the molecule to be labelled, thereby indirectly coupling the small molecule ligand to the molecule to be labelled.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: November 3, 2015
    Assignee: Innova Biosciences Limited
    Inventor: Nicholas Gee
  • Patent number: 8877892
    Abstract: We describe methods that allow either carbodiimides or other carboxyl-reactive substances to be mixed with solutions of carboxylic acids or phosphates or amines or combinations thereof, so as to form a homogeneous mixture which is then dried, preferably in a freeze drying process. The mixture is then contacted with an entity, which preferably involves the dissolution of the mixture with a buffered solution of the entity, so as to initiate a conjugation reaction between the entity and a component in the mixture.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 4, 2014
    Assignee: Innova Biosciences Limited
    Inventors: Nicholas Gee, Annamaria Draghi
  • Publication number: 20130295641
    Abstract: A method of reacting a first chemical entity and a second chemical entity to form a conjugate in which the first and second chemical entities are covalently bound with respect to each other, comprises bringing into simultaneous contact the first chemical entity, the second chemical entity and a thiol generator, wherein the thiol generator reacts with the first chemical entity in a thiolation reaction resulting in formation of a free sulfhydryl group on the first chemical entity, and the free sulfhydryl group reacts with the second chemical entity to form the conjugate, and wherein the second chemical entity is polyvalent with respect to its reactivity with sulfhydryl groups. The present invention primarily differs from the prior art in that no separation step is involved between reaction of the thiol generator and first chemical entity and reaction with the second chemical entity. The invention also provides a conjugation kit.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Nicholas Gee, Michael Knowles
  • Patent number: 8492129
    Abstract: A method of reacting a first chemical entity and a second chemical entity to form a conjugate in which the first and second chemical entities are covalently bound with respect to each other, comprises bringing into simultaneous contact the first chemical entity, the second chemical entity and a thiol generator, wherein the thiol generator reacts with the first chemical entity in a thiolation reaction resulting in formation of a free sulfhydryl group on the first chemical entity, and the free sulfhydryl group reacts with the second chemical entity to form the conjugate, and wherein the second chemical entity is polyvalent with respect to its reactivity with sulfhydryl groups. The present invention primarily differs from the prior art in that no separation step is involved between reaction of the thiol generator and first chemical entity and reaction with the second chemical entity. The invention also provides a conjugation kit.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 23, 2013
    Assignee: Innova Biosciences, Ltd.
    Inventors: Nicholas Gee, Michael Knowles
  • Publication number: 20120237998
    Abstract: We describe methods that allow either carbodiimides or other carboxyl-reactive substances to be mixed with solutions of carboxylic acids or phosphates or amines or combinations thereof, so as to form a homogeneous mixture which is then dried, preferably in a freeze drying process. The mixture is then contacted with an entity, which preferably involves the dissolution of the mixture with a buffered solution of the entity, so as to initiate a conjugation reaction between the entity and a component in the mixture.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Applicant: INNOVA BIOSCIENCES LIMITED
    Inventors: Nicholas Gee, Annamaria Draghi
  • Publication number: 20100184184
    Abstract: Disclosed is a method for indirectly coupling a small molecule ligand to a molecule to be labelled with the ligand, the method comprising the step of: contacting a scaffold molecule, to which is attached at least one small molecule ligand, with the molecule to be labelled, the scaffold molecule having at least one group which is reactive towards a receiver moiety present or formed in situ on the molecule to be labelled, so as to forma bond between the scaffold molecule and the molecule to be labelled, thereby indirectly coupling the small molecule ligand to the molecule to be labelled.
    Type: Application
    Filed: June 12, 2008
    Publication date: July 22, 2010
    Applicant: Innova Biosciences Limited
    Inventor: Nicholas Gee
  • Publication number: 20080299637
    Abstract: A method of reacting a first chemical entity and a second chemical entity to form a conjugate in which the first and second chemical entities are covalently bound with respect to each other, comprises bringing into simultaneous contact the first chemical entity, the second chemical entity and a thiol generator, wherein the thiol generator reacts with the first chemical entity in a thiolation reaction resulting in formation of a free sulfhydryl group on the first chemical entity, and the free sulfhydryl group reacts with the second chemical entity to form the conjugate, and wherein the second chemical entity is polyvalent with respect to its reactivity with sulfhydryl groups. The present invention primarily differs from the prior art in that no separation step is involved between reaction of the thiol generator and first chemical entity and reaction with the second chemical entity. The invention also provides a conjugation kit.
    Type: Application
    Filed: December 12, 2006
    Publication date: December 4, 2008
    Inventors: Nicholas Gee, Michael Knowles