Patents by Inventor Nicholas J. Decristofaro

Nicholas J. Decristofaro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7506566
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 24, 2009
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 7289013
    Abstract: A bulk amorphous metal inductive device includes a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air therein. The component has a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: October 30, 2007
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Patent number: 7235910
    Abstract: A selective etching process cuts shapes from amorphous metal strip feedstock. The etching process comprises depositing a chemically resistant material to one side of the strip in a pattern that defines the requisite shape, mating the metal strip with a carrier strip, exposing at least one side of the metal strip to an etching agent to selectively etch the desired shape, and separating the shape from the strip feedstock. A plurality of layers of the shapes is assembled by adhesive lamination to form a generally polyhedrally shaped bulk amorphous metal magnetic component useful in high efficiency electric motors and inductive devices. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 26, 2007
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Patent number: 7144468
    Abstract: A unitary amorphous metal magnetic component for an axial flux electric machine such as a motor or generator is formed from a spirally wound annular cylinder of ferromagnetic amorphous metal strips. The cylinder is adhesively bonded and provided with a plurality of slots formed in one of the annular faces of the cylinder and extending from the inner diameter to the outer diameter of the cylinder. The component is preferably employed in constructing a high efficiency, axial flux electric motor. When operated at an excitation frequency “f” to a peak induction level Bmax the unitary amorphous metal magnetic component has a core-loss less than “L” wherein L is given by the formula L=0.0074f(Bmax)1.3+0.000282f1.5(Bmax)2.4, the core loss, excitation frequency and peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: December 5, 2006
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Scott M. Lindquist, Sastry S. Renduchintala, Carl E. Kroger
  • Patent number: 7011718
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: March 14, 2006
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 6960860
    Abstract: An amorphous metal stator for a high efficiency radial-flux electric motor has a plurality of segments, each of which includes a plurality of layers of amorphous metal strips. The plural segments are arranged to form a generally cylindrical stator having a plurality of teeth sections or poles protruding radially inward from the inner surface of the stator. In a first embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator crosses just one air gap when traversing each segment of the stator. In a second embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator traverses each segment without crossing an air gap.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: November 1, 2005
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Dung A. Ngo, Richard L. Bye, Jr., Peter J. Stamatis, Gordon E. Fish
  • Patent number: 6883701
    Abstract: A plurality of parts are brazed using an iron/chromium filler metal. The parts are preferably composed of stainless steel. The brazed assembly forms a heat exchanger characterized by good corrosion resistance and low rates of leaching of Ni, which are further improved by a post-brazing conditioning step in an oxygen-containing atmosphere at a temperature of about 150° to 600° C. The preferred brazing filler metal consists essentially of a composition having the formula FeaCrbCocNidMoeWfBgSih wherein the subscripts are in atom percent and total 100%, “b” is about 5 to 20, “c” ranges from 0 to about 30, “d” is 0 to about 20, “e” is 0 to about 5, “f” is 0 to about 5, “g” is about 8 to 15, “h” is about 8 to 15, the balance being incidental impurities of up to about 1 percent by weight of the total composition.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: April 26, 2005
    Assignee: Metglas, Inc.
    Inventors: Anatol Rabinkin, Nicholas J. DeCristofaro
  • Patent number: 6873239
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air gap therein. The component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhederally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: March 29, 2005
    Assignee: Metglas Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Publication number: 20040212269
    Abstract: A selective etching process cuts shapes from amorphous metal strip feedstock. The etching process comprises depositing a chemically resistant material to one side of the strip in a pattern that defines the requisite shape, mating the metal strip with a carrier strip, exposing at least one side of the metal strip to an etching agent to selectively etch the desired shape, and separating the shape from the strip feedstock. A plurality of layers of the shapes is assembled by adhesive lamination to form a generally polyhedrally shaped bulk amorphous metal magnetic component useful in high efficiency electric motors and inductive devices. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Patent number: 6803694
    Abstract: A unitary amorphous metal magnetic component for an axial flux electric machine such as a motor or generator is formed from a spirally wound annular cylinder of ferromagnetic amorphous metal strips. The cylinder is adhesively bonded and provided with a plurality of slots formed in one of the annular faces of the cylinder and extending from the inner diameter to the outer diameter of the cylinder. The component is preferably employed in constructing a high efficiency, axial flux electric motor. When operated at an excitation frequency “f” to a peak induction level Bmax the unitary amorphous metal magnetic component has a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, the core loss, excitation frequency and peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: October 12, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Scott M. Lindquist, Sastry S. Renduchintala, Carl E. Kroger
  • Patent number: 6784588
    Abstract: A high efficiency electric motor has a generally polyhedrally shaped bulk amorphous metal magnetic component in which a plurality of layers of amorphous metal strips are laminated together adhesively to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the motor is operated at an excitation frequency “f” to a peak induction level Bmax, the component exhibits a core-loss less than about “L” wherein L is given by the formula L=0.005 f (Bmax)1.5+0.000012 f1.5 (Bmax)1.6, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: August 31, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Publication number: 20040150285
    Abstract: A high efficiency electric motor has a generally polyhedrally shaped bulk amorphous metal magnetic component in which a plurality of layers of amorphous metal strips are laminated together adhesively to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the motor is operated at an excitation frequency “f” to a peak induction level Bmax, the component exhibits a core-loss less than about “L” wherein L is given by the formula L=0.005 f(Bmax)1.5+0.000012 f1.5(Bmax)1.6, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Patent number: 6764556
    Abstract: A copper-nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a function of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 20, 2004
    Inventors: Shinya Myojin, Richard L. Bye, Nicholas J. Decristofaro, Jeng S. Lin, David W. Millure, Joseph G. Cox, Jr., Dale R. Walls, Gary B. A. Schuster
  • Publication number: 20040112566
    Abstract: A copper- nickel-silicon quench substrate rapidly solidifies molten alloy into microcrystalline or amorphous strip. The substrate is composed of a thermally conducting alloy. It has a two-phase microstructure with copper rich regions surrounded by a network of nickel silicide phases. The microstructure is substantially homogeneous. Casting of strip is accomplished with minimal surface degradation as a finction of casting time. The quantity of material cast during each run is improved without the toxicity encountered with copper-beryllium substrates.
    Type: Application
    Filed: May 17, 2002
    Publication date: June 17, 2004
    Inventors: Shinya Myojin, Richard L. Bye, Nicholas J. Decristofaro, Jeng S. Lin, David W. Millure, Joseph G. Cox, Dale R. Walls, Gary B.A. Schuster
  • Publication number: 20040108366
    Abstract: A plurality of parts are brazed using an iron/chromium brazing filler metal. The parts are preferably composed of stainless steel and the brazed assembly forms a heat exchanger characterized by good corrosion resistance and low rates of leaching of Ni into fluids passing therethrough. The heat exchanger is especially suited for use in processing items intended to be ingested by humans or animals. Leaching rates and corrosion resistance are further enhanced by a post-brazing conditioning step wherein the assembly is heated in an oxygen-containing atmosphere to a temperature ranging from about 150° to 600° C.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 10, 2004
    Applicant: Metglas, Inc.
    Inventors: Anatol Rabinkin, Nicholas J. Decristofaro
  • Patent number: 6744342
    Abstract: A high performance bulk magnetic component includes a plurality of layers of crystalline, ferromagnetic metal strips adhesively bonded together to form a polyhedrally shaped part. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it exhibits a core-loss less than “L” wherein L is given by the formula L=0.0135 f (Bmax)1.9+0.000108 f1.6 (Bmax)1.92, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively. Performance characteristics of the high performance bulk magnetic component of the present invention are significantly better when compared to silicon-steel components operated over the same frequency range.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: June 1, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish
  • Patent number: 6737951
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having plurality of low-loss bulk ferromagnetic amorphous metal magnetic components assembled in juxtaposed relationship to form at least one magnetic circuit and secured in position, e.g. by banding or potting. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. Each component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. Air gaps are optionally interposed between the mating faces of the constituent components of the device to enhance its energy storage capacity for inductor applications.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: May 18, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawwa, Seshu V. Tatikola
  • Patent number: 6737784
    Abstract: A bulk amorphous metal magnetic component for an electric machine such as a motor or generator is described. The component may include a plurality of substantially similarly shaped laminations stamped from ferromagnetic amorphous metal strips, stacked and bonded together in registry, wherein the laminations include a plurality of tooth-shaped sections. In an alternate implementation, the component may be constructed by first stacking a plurality of layers of amorphous metal strips, laminating the layers and then cutting the object to form the component. The bulk amorphous metal magnetic component when operated at an excitation frequency “f” to a peak induction level Bmax has a core-loss less than “L” wherein L is given by the formula L=0.0074 f(Bmax)1.3+0.000282 f1.5(Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: May 18, 2004
    Inventors: Scott M. Lindquist, Gordon E. Fish, Nicholas J. DeCristofaro, Peter J. Stamatis
  • Publication number: 20040085174
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having at least low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air gap therein. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. The component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. The component is fabricated by a process comprising cutting laminations of the requisite shape. The cut laminations are stacked and registered, and then bonded by an adhesive agent. The cutting of laminations is advantageously done with stamping or photolithographic etching techniques.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Publication number: 20040085173
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having plurality of low-loss bulk ferromagnetic amorphous metal magnetic components assembled in juxtaposed relationship to form at least one magnetic circuit and secured in position, e.g. by banding or potting. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. Each component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. Air gaps are optionally interposed between the mating faces of the constituent components of the device to enhance its energy storage capacity for inductor applications.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Seshu V. Tatikola