Patents by Inventor Nicholas J. Neild

Nicholas J. Neild has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Publication number: 20140205503
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: QUANTUM DESIGN INTERNATIONAL, INC.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild