Patents by Inventor Nicholas Kalfas
Nicholas Kalfas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12088201Abstract: Aspects of the present disclosure provide a power activation module for powering one or more wearable electronic components. The power activation module includes a switch configured to provide a path for current flow between a battery associated with the power activation module, the one or more wearable electronic components, and a ground terminal. The power activation module also includes a sensor configured to detect whether a signal is applied to the sensor and, based on the detection, output a first digital output signal for controlling, at least in part, the switch to control the current flow from the battery to the one or more wearable electronic components. The power activation module also includes a lock pin configured to receive a lock signal, wherein when the lock signal is received, the switch is locked to allow current flow from the battery to the one or more wearable electronic components.Type: GrantFiled: January 25, 2023Date of Patent: September 10, 2024Assignee: Dexcom, Inc.Inventors: Nicholas Kalfas, Gary Thomas Neel
-
Publication number: 20240252074Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: ApplicationFiled: January 29, 2024Publication date: August 1, 2024Inventors: Sebastian Böhm, Anna Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha Sheth, Nicholas Kalfas, Vincent Crabtree, Kamuran Turksoy
-
Patent number: 12029560Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: GrantFiled: December 27, 2019Date of Patent: July 9, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
-
Publication number: 20240215876Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.Type: ApplicationFiled: December 30, 2022Publication date: July 4, 2024Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
-
Publication number: 20230238884Abstract: Aspects of the present disclosure provide a power activation module for powering one or more wearable electronic components. The power activation module includes a switch configured to provide a path for current flow between a battery associated with the power activation module, the one or more wearable electronic components, and a ground terminal. The power activation module also includes a sensor configured to detect whether a signal is applied to the sensor and, based on the detection, output a first digital output signal for controlling, at least in part, the switch to control the current flow from the battery to the one or more wearable electronic components. The power activation module also includes a lock pin configured to receive a lock signal, wherein when the lock signal is received, the switch is locked to allow current flow from the battery to the one or more wearable electronic components.Type: ApplicationFiled: January 25, 2023Publication date: July 27, 2023Inventors: Nicholas KALFAS, Gary Thomas NEEL
-
Publication number: 20230218203Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: ApplicationFiled: March 21, 2023Publication date: July 13, 2023Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas, David J. Gennrich, Matthew Bettman, Eric Gobrecht, Randall Scott Koplin, Ryan Marc Braunstein, Young Woo Lee
-
Publication number: 20230218206Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: ApplicationFiled: March 27, 2023Publication date: July 13, 2023Inventors: Jason HALAC, Sebastian BOHM, Vincent Peter CRABTREE, David S. DERENZY, Mark S. DERVAES, Nicholas KALFAS, Zebediah L. MCDANIEL, Michael Levozier MOORE, Todd Andrew NEWHOUSE, Michael A. PLOOF, Stephen Alan REICHERT, Peter C. SIMPSON, Alexander Leroy TEETER, Rodolfo GARCIA, Jaroslaw PIOTROWIAK, Thomas George O'CONNELL, Arlene G. DORIA
-
Publication number: 20230210418Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.Type: ApplicationFiled: December 30, 2022Publication date: July 6, 2023Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
-
Publication number: 20230210410Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.Type: ApplicationFiled: December 30, 2022Publication date: July 6, 2023Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Cari E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
-
Publication number: 20230210409Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.Type: ApplicationFiled: December 30, 2022Publication date: July 6, 2023Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
-
Patent number: 11690537Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: GrantFiled: May 3, 2019Date of Patent: July 4, 2023Assignee: DexCom, Inc.Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas
-
Patent number: 11642048Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: GrantFiled: May 3, 2019Date of Patent: May 9, 2023Assignee: DexCom, Inc.Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas
-
Patent number: 11638540Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: GrantFiled: May 1, 2019Date of Patent: May 2, 2023Assignee: Dexcom, Inc.Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslaw Piotrowiak, Thomas George O'Connell, Arlene G. Doria
-
Publication number: 20220192545Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: ApplicationFiled: March 7, 2022Publication date: June 23, 2022Inventors: Jason HALAC, Sebastian BOHM, Vincent Peter CRABTREE, David DERENZY, Mark S. DERVAES, Nicholas KALFAS, Zebediah L. MCDANIEL, Michael Levozier MOORE, Todd Andrew NEWHOUSE, Michael A. PLOOF, Stephen Alan REICHERT, Peter C. SIMPSON, Alexander Leroy TEETER, Rodolfo GARCIA, Jaroslaw PIOTROWIAK, Thomas George O'CONNELL, Arlene G. DORIA
-
Patent number: 11350857Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: GrantFiled: May 1, 2019Date of Patent: June 7, 2022Assignee: Dexcom, Inc.Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslaw Piotrowiak, Thomas George O'Connell, Arlene G. Doria
-
Publication number: 20200205701Abstract: Various examples described herein are directed to systems and methods for determining an analyte concentration using an analyte sensor. A method may comprise disconnecting an analyte sensor from a measurement circuit and reconnecting the analyte sensor to the measurement circuit after an accumulation period. The method may comprise receiving a signal from the analyte sensor. The signal may be indicative of an amount of charge accumulated on the analyte sensor during the accumulation period. The method may also comprise determining an estimated analyte concentration level based on the received signal.Type: ApplicationFiled: December 27, 2019Publication date: July 2, 2020Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas
-
Publication number: 20200205702Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: ApplicationFiled: December 27, 2019Publication date: July 2, 2020Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
-
Publication number: 20190342637Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: ApplicationFiled: May 1, 2019Publication date: November 7, 2019Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslav Piotrowiak, Thomas George O?Connell, Arlene G. Doria
-
Publication number: 20190336049Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: ApplicationFiled: May 3, 2019Publication date: November 7, 2019Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas, David J. Gennrich, Matthew Bettman, Eric Gobrecht, Randall Scott Koplin, Ryan Mark Braunstein, Young Woo Lee
-
Publication number: 20190336055Abstract: An analyte sensor system is provided. The system includes a base configured to attach to a skin of a host. The base includes an analyte sensor configured to generate a sensor signal indicative of an analyte concentration level of the host, a battery, and a first plurality of contacts. The system includes a sensor electronics module configured to releasably couple to the base. The sensor electronics module includes a second plurality of contacts, each configured to make electrical contact with a respective one of the first plurality of contacts, and a wireless transceiver configured to transmit a wireless signal based at least in part on the sensor signal. The system includes a first sealing member configured to provide a seal around the first and second plurality of contacts within a first cavity. Related analyte sensor systems, analyte sensor base assemblies and methods are also provided.Type: ApplicationFiled: May 3, 2019Publication date: November 7, 2019Inventors: Neel Narayan Shah, John Michael Gray, Jason Halac, Carl Erich Hoffmeier, Neal Davis Johnston, Nicholas Kalfas, David J. Gennrich, Matthew Bettman, Eric Gobrecht, Randall Scott Koplin, Ryan Mark Braunstein, Young Woo Lee