Patents by Inventor Nicholas LAROUCHE

Nicholas LAROUCHE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240359989
    Abstract: Provided is a process for dispersing graphene nanosheets in a solvent. The process comprises heating the graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C. and dispersing the graphene nanosheets in a solvent.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Applicant: RAYMOR INDUSTRIES INC.
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE, Matthieu BALMAYER
  • Patent number: 12043547
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Grant
    Filed: August 18, 2023
    Date of Patent: July 23, 2024
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche, Matthieu Balmayer
  • Publication number: 20230391624
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 7, 2023
    Applicant: RAYMOR INDUSTRIES INC.
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE, Matthieu BALMAYER
  • Patent number: 11760642
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight. Also provided are Graphene nanosheets having a polyaromatic hydrocarbon concentration of about 0.01% to about 0.5%.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: September 19, 2023
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche, Matthieu Balmayer
  • Publication number: 20230192497
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight. Also provided are Graphene nanosheets having a polyaromatic hydrocarbon concentration of about 0.01% to about 0.5%.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 22, 2023
    Applicant: RAYMOR INDUSTRIES INC.
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE, Matthieu BALMAYER
  • Patent number: 11608271
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: March 21, 2023
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche, Matthieu Balmayer
  • Publication number: 20230039687
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Application
    Filed: July 18, 2022
    Publication date: February 9, 2023
    Applicant: RAYMOR INDUSTRIES INC.
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE, Matthieu BALMAYER
  • Patent number: 11420873
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T.) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: August 23, 2022
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche, Matthieu Balmayer
  • Patent number: 10843925
    Abstract: Provided are plasma processes for producing graphene nanosheets comprising injecting into a thermal zone of a plasma a carbon-containing substance at a velocity of at least 60 m/s standard temperature and pressure STP to nucleate the graphene nanosheets, and quenching the graphene nanosheets with a quench gas of no more than 1000° C. The injecting of the carbon-containing substance may be carried out using a plurality of jets. The graphene nanosheets may have a Raman G/D ratio greater than or equal to 3 and a 2D/G ratio greater than or equal to 0.8, as measured using an incident laser wavelength of 514 nm. The graphene nanosheets may be produced at a rate of at least 80 g/h. The graphene nanosheets can have a polyaromatic hydrocarbon concentration of less than about 0.7% by weight.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: November 24, 2020
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche
  • Patent number: 10793440
    Abstract: Provided are plasma processes for producing graphene nanosheets comprising injecting into a thermal zone of a plasma a carbon-containing substance at a velocity of at least 60 m/s standard temperature and pressure STP to nucleate the graphene nanosheets, and quenching the graphene nanosheets with a quench gas of no more than 1000° C. The injecting of the carbon-containing substance may be carried out using a plurality of jets. The graphene nanosheets may have a Raman G/D ratio greater than or equal to 3 and a 2D/G ratio greater than or equal to 0.8, as measured using an incident laser wavelength of 514 nm. The graphene nanosheets may be produced at a rate of at least 80 g/h. The graphene nanosheets can have a polyaromatic hydrocarbon concentration of less than about 0.7% by weight.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: October 6, 2020
    Assignee: RAYMOR INDUSTRIES INC.
    Inventors: Jens Kroeger, Nicholas Larouche, Frédéric Larouche
  • Publication number: 20200223698
    Abstract: Provided are plasma processes for producing graphene nanosheets comprising injecting into a thermal zone of a plasma a carbon-containing substance at a velocity of at least 60 m/s standard temperature and pressure STP to nucleate the graphene nano sheets, and quenching the graphene nanosheets with a quench gas of no more than 1000° C. The injecting of the carbon-containing substance may be carried out using a plurality of jets. The graphene nanosheets may have a Raman G/D ratio greater than or equal to 3 and a 2D/G ratio greater than or equal to 0.8, as measured using an incident laser wavelength of 514 nm. The graphene nanosheets may be produced at a rate of at least 80 g/h. The graphene nanosheets can have a polyaromatic hydrocarbon concentration of less than about 0.7% by weight.
    Type: Application
    Filed: December 20, 2017
    Publication date: July 16, 2020
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE
  • Publication number: 20190382272
    Abstract: Provided are graphene nanosheets having a polyaromatic hydrocarbon concentration of less than about 0.7% by weight and a tap density of less than about 0.08 g/cm3, as measured by ASTM B527-15 standard. The graphene nanosheets also have a specific surface area (B.E.T.) greater than about 250 m2/g. Also provided are processes for producing graphene nanosheets as well as for removing polyaromatic hydrocarbons from graphene nanosheets, comprising heating said graphene nanosheets under oxidative atmosphere, at a temperature of at least about 200° C.
    Type: Application
    Filed: February 8, 2018
    Publication date: December 19, 2019
    Applicant: RAYMOR INDUSTRIES INC.
    Inventors: Jens KROEGER, Nicholas LAROUCHE, Frédéric LAROUCHE, Matthieu BALMAYER