Patents by Inventor Nicholas Leventis

Nicholas Leventis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8501319
    Abstract: A composite material that includes a dopant comprised of pre-formed, three dimensional assemblies of skeletal structures that are comprised of solgel derived nanoparticles. The composite material includes a chemically bonded, in situ formed, polymer coating that at least partially coats mesoporous surfaces of the nanoparticles to provide enhancement of random dispersion of the dopant and to minimize or avoid agglomeration. Further, the polymer may be functionalized or the mesoporous surfaces of the nanoparticles may be treated to enable stronger chemical bonding between the dopant and the polymer.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 6, 2013
    Assignee: The Curators of the University of Missouri, University of Missouri System, Office of Technology and Special Projects
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Publication number: 20130085290
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 4, 2013
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Leventis
  • Patent number: 8394492
    Abstract: This invention comprises reinforced aerogel monoliths such as silica aerogels having a polymer coating on its outer geometric surface boundary, and to the method of preparing said aerogel monoliths. The polymer coatings on the aerogel monoliths are derived from polymer precursors selected from the group consisting of isocyanates as a precursor, precursors of epoxies, and precursors of polyimides. The coated aerogel monoliths can be modified further by encapsulating the aerogel with the polymer precursor reinforced with fibers such as carbon or glass fibers to obtain mechanically reinforced composite encapsulated aerogel monoliths.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: March 12, 2013
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Nicholas Leventis, James C. Johnston, Maria A. Kuczmarski, Mary Ann B. Meador
  • Patent number: 8277676
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: October 2, 2012
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Patent number: 8227363
    Abstract: Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 24, 2012
    Assignees: Ohio Aerospace Institute, The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Nicholas Leventis, Mary Ann B. Meador, James C. Johnston, Eve F. Fabrizio, Ulvi F. Ilhan
  • Publication number: 20120152846
    Abstract: Porous three-dimensional networks of polyurea and porous three-dimensional networks of carbon and methods of their manufacture are described. In an example, polyurea aerogels are prepared by mixing an triisocyanate with water and a triethylamine to form a sol-gel material and supercritically drying the sol-gel material to form the polyurea aerogel. Subjecting the polyurea aerogel to a step of pyrolysis may result in a three dimensional network having a carbon skeleton, yielding a carbon aerogel. The density and morphology of polyurea aerogels can be controlled by varying the amount of isocyanate monomer in the initial reaction mixture. A lower density in the aerogel gives rise to a fibrous morphology, whereas a greater density in the aerogel results in a particulate morphology. Polyurea aerogels described herein may also exhibit a reduced flammability.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 21, 2012
    Applicant: Aerogel Technologies, LLC.
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Sudhir Mulik
  • Publication number: 20120134909
    Abstract: Porous three-dimensional networks of polyimide and porous three-dimensional networks of carbon and methods of their manufacture are described. For example, polyimide aerogels are prepared by mixing a dianhydride and a diisocyanate in a solvent comprising a pyrrolidone and acetonitrile at room temperature to form a sol-gel material and supercritically drying the sol-gel material to form the polyimide aerogel. Porous three-dimensional polyimide networks, such as polyimide aerogels, may also exhibit a fibrous morphology. Having a porous three-dimensional polyimide network undergo an additional step of pyrolysis may result in the three dimensional network being converted to a purely carbon skeleton, yielding a porous three-dimensional carbon network. The carbon network, having been derived from a fibrous polyimide network, may also exhibit a fibrous morphology.
    Type: Application
    Filed: August 22, 2011
    Publication date: May 31, 2012
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis, Chakkaravarthy Chidambareswarapattar
  • Publication number: 20110250428
    Abstract: Three-dimensional nanoporous aerogels and suitable preparation methods are provided. Nanoporous aerogels may include a carbide material such as a silicon carbide, a metal carbide, or a metalloid carbide. Elemental (e.g., metallic or metalloid) aerogels may also be produced. In some embodiments, a cross-linked aerogel having a conformal coating on a sol-gel material is processed to form a carbide aerogel, metal aerogel, or metalloid aerogel. A three-dimensional nanoporous network may include a free radical initiator that reacts with a cross-linking agent to form the cross-linked aerogel. The cross-linked aerogel may be chemically aromatized and chemically carbonized to form a carbon-coated aerogel. The carbon-coated aerogel may be suitably processed to undergo a carbothermal reduction, yielding an aerogel where oxygen is chemically extracted. Residual carbon remaining on the surface of the aerogel may be removed via an appropriate cleaning treatment.
    Type: Application
    Filed: February 7, 2011
    Publication date: October 13, 2011
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Anand G. Sadekar, Naveen Candrasekaran, Chariklia Sotiriou-Leventis
  • Publication number: 20100316550
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Application
    Filed: July 19, 2010
    Publication date: December 16, 2010
    Applicant: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Publication number: 20100310831
    Abstract: A composite material that includes a dopant comprised of pre-formed, three dimensional assemblies of skeletal structures that are comprised of solgel derived nanoparticles. The composite material includes a chemically bonded, in situ formed, polymer coating that at least partially coats mesoporous surfaces of the nanoparticles to provide enhancement of random dispersion of the dopant and to minimize or avoid agglomeration. Further, the polymer may be functionalized or the mesoporous surfaces of the nanoparticles may be treated to enable stronger chemical bonding between the dopant and the polymer.
    Type: Application
    Filed: August 22, 2008
    Publication date: December 9, 2010
    Inventors: Nicholas Leventis, Chariklia Sotiriou-Leventis
  • Publication number: 20100247897
    Abstract: A bidentate free radical crosslinking initiator binds chemically to silica and silica rich surfaces and enables the free radical based polymerization of various materials such as styrene, divinylbenzene and methylmethacrylate onto silica and silica rich surfaces. When used in connection with aerogels, the resultant crosslinked aerogels exhibit greatly increased strength with only nominal increase in density.
    Type: Application
    Filed: September 5, 2008
    Publication date: September 30, 2010
    Inventors: Nicholas Leventis, Sudhir Mulik, Chariklia Sotiriou-Leventis
  • Publication number: 20100204355
    Abstract: Macroporous monolithic silica aerogels having mesoporous walls are produced via an acid-catalyzed sol-gel process from tetramethoxysilane (TMOS) using a triblock co-polymer (Pluronic P123) as a structure-directing agent and 1,3,5-trimethylbenzene (TMB) as a micelle-swelling reagent. Pluronic P 123 was removed by solvent extraction, and monoliths were obtained by removing the pore-filling solvent with liquid CO2, which was removed under supercritical conditions. The resulting materials are more robust compared to base-catalyzed silica aerogels of similar density. Mechanical properties can be further improved by reacting a di-isocyanate with the silanol groups on the macro and mesoporous surfaces. The polymer forms a conformal coat on the macropores and blocks access to the mesopores of templated samples, so that BET surface areas decrease dramatically.
    Type: Application
    Filed: September 5, 2008
    Publication date: August 12, 2010
    Inventors: Nicholas Leventis, Sudhir Mulik, Xiaojiang Wang, Chariklia Sotiriou-Leventis
  • Patent number: 7771609
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: August 10, 2010
    Assignee: Aerogel Technologies, LLC
    Inventors: Nicholas Leventis, Chariklia Leventis
  • Publication number: 20100179288
    Abstract: Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
    Type: Application
    Filed: February 8, 2010
    Publication date: July 15, 2010
    Applicants: Ohio Aerospace Institute, U.S. Government, represented by the Administrator of the National Aeronautics & Space Administration
    Inventors: Nicholas Leventis, Mary Ann B. Meador, James C. Johnston, Eve F. Fabrizio, Ulvi F. Ilhan
  • Patent number: 7732496
    Abstract: Structurally stable and mechanically strong ceramic oxide aerogels are provided. The aerogels are cross-linked via organic polymer chains that are attached to and extend from surface-bound functional groups provided or present over the internal surfaces of a mesoporous ceramic oxide particle network via appropriate chemical reactions. The functional groups can be hydroxyl groups, which are native to ceramic oxides, or they can be non-hydroxyl functional groups that can be decorated over the internal surfaces of the ceramic oxide network. Methods of preparing such mechanically strong ceramic oxide aerogels also are provided.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: June 8, 2010
    Assignees: Ohio Aerospace Institute, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Nicholas Leventis, Mary Ann B. Meador, James C. Johnston, Eve F. Fabrizio, Ulvi F. Ilhan
  • Publication number: 20090036646
    Abstract: A method of drying an aerogel is disclosed. The method includes washing the aerogel in acetone, washing the aerogel in pentane, and heating the aerogel in the presence of pentane. The aerogel is removed from the pentane and the heating continues.
    Type: Application
    Filed: August 4, 2008
    Publication date: February 5, 2009
    Inventors: Hongbing Lu, Nicholas Leventis
  • Publication number: 20070134902
    Abstract: The present invention relates to process for patterning metal-containing particles on or in a substrate. The present invention also relates to a non-etched substrate having metal-containing particles patterned thereon.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 14, 2007
    Applicant: THE CURATORS OF THE UNIVERSITY OF MISSOURI
    Inventors: Massimo Bertino, Nicholas Leventis, Akira Tokuhiro, Guohui Zhang
  • Publication number: 20040132846
    Abstract: Cross-linked sol-gel like materials and cross-linked aerogels, as well as methods for making such cross-linked sol-gel like materials and cross-linked aerogels are described.
    Type: Application
    Filed: August 18, 2003
    Publication date: July 8, 2004
    Inventors: Nicholas Leventis, Chariklia Leventis
  • Patent number: 5846658
    Abstract: A method of making randomly oriented carbons fibrils having a cylindrical constant diameter with c-axes perpendicular to their cylindrical axis, which are free of pyrolytically deposited carbon, with a diameter of between 3.5 and 70 nanometers, by dispersing carbon fibrils in a medium and separating them from the medium, by filtration or evaporation to form a porous mat or sheet.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 8, 1998
    Assignee: Hyperion Catalysis Int'l Inc.
    Inventors: Howard Tennent, Robert W. Hausslein, Nicholas Leventis, David Moy
  • Patent number: 5818636
    Abstract: Electrochromic device having electrode surface confined complementary polymer electrochromic materials, and materials, systems and methods of fabrication therefore. The electrochromic devices employ a polypyrrole-prussian blue composite material on the oxiatively coloring electrode, and a heteroaromatic substance containing at least one quaternized nitrogen atom group on the reductively coloring electrode. A bilayer material consisting substantially of metallic oxide which is conductive in at least one of its redox states and electroplated with a polymer is also disclosed for use as an electrochromic material on either the oxidatively colored or reductively colored electrodes. A method for electrodeposition of viologen polymers at a substantially neutral pH is also disclosed. A method for self-powering and self-modulating electrochromic devices by means of photovoltaic cells is also disclosed.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Molecular Displays, Inc.
    Inventors: Nicholas Leventis, Young C. Chung