Patents by Inventor Nicholas P. Cicchini

Nicholas P. Cicchini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11473500
    Abstract: A method of reducing low-energy flow in a flight vehicle engine includes an isolator of the engine having a swept-back wedge to improve flow mixing. The wedge includes forward shock-anchoring locations, such as edges or rapidly-curved portions, that anchor oblique shocks in situations where the isolator has sufficient back pressure. The swept-back wedge may also create swept oblique shocks along its length. Boundary layer flow streamlines are diverted running parallel to or parallel but moving outward conically to the swept-wedge leading edge moving outboard and upward. The non-viscous flow outside the boundary layer is processed through the swept-back ramp shock and diverted outboard and upward as well. The outboard aft portion of the wedge at the sidewall intersection may also induce shocks and divert flow near the walls closer toward the walls and upward, and/or improve flow mixing.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 18, 2022
    Assignee: Raytheon Company
    Inventor: Nicholas P. Cicchini
  • Patent number: 11261785
    Abstract: A flight vehicle has an engine that includes air inlet, an isolator (or diffuser) downstream of the air inlet, and a combustor downstream of the isolator. The isolator includes a bulged region that has at least one dimension, perpendicular to the direction of the air flow from the inlet to the combustor, that is at a local maximum, larger than comparable isolator dimensions both upstream and downstream of the bulged region. The bulged region stabilizes shocks within the isolator, and facilitates flow mixing. The flow diversion of high energy flow around the outermost walls of the bulged section into the center of the flow at the aft end of the isolator, increases mixing of the flow, and results in a more consistent flow profile entering the combustor over a wide range of flight conditions (Mach, altitude, angle-of-attack, yaw) and throttle settings.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 1, 2022
    Assignee: Raytheon Company
    Inventor: Nicholas P. Cicchini
  • Publication number: 20210246850
    Abstract: A method of reducing low-energy flow in a flight vehicle engine includes an isolator of the engine having a swept-back wedge to improve flow mixing. The wedge includes forward shock-anchoring locations, such as edges or rapidly-curved portions, that anchor oblique shocks in situations where the isolator has sufficient back pressure. The swept-back wedge may also create swept oblique shocks along its length. Boundary layer flow streamlines are diverted running parallel to or parallel but moving outward conically to the swept-wedge leading edge moving outboard and upward. The non-viscous flow outside the boundary layer is processed through the swept-back ramp shock and diverted outboard and upward as well. The outboard aft portion of the wedge at the sidewall intersection may also induce shocks and divert flow near the walls closer toward the walls and upward, and/or improve flow mixing.
    Type: Application
    Filed: April 28, 2021
    Publication date: August 12, 2021
    Applicant: Raytheon Company
    Inventor: Nicholas P. Cicchini
  • Patent number: 11002223
    Abstract: A flight vehicle engine includes an isolator with a swept-back wedge to improve flow mixing. The wedge includes forward shock-anchoring locations, such as edges or rapidly-curved portions, that anchor oblique shocks in situations where the isolator has sufficient back pressure. The swept-back wedge may also create swept oblique shocks along its length. Boundary layer flow streamlines are diverted running parallel to or parallel but moving outward conically to the swept-wedge leading edge moving outboard and upward. The non-viscous flow outside the boundary layer is processed through the swept-back ramp shock and diverted outboard and upward as well. The outboard aft portion of the wedge at the sidewall intersection may also induce shocks and divert flow near the walls closer toward the walls and upward, and/or improve flow mixing.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 11, 2021
    Assignee: Raytheon Company
    Inventor: Nicholas P. Cicchini
  • Patent number: 10590848
    Abstract: A flight vehicle has a propulsion system that includes an air inlet, an isolator (or diffuser) downstream of the air inlet, and a combustor downstream of the isolator. The isolator includes an obstruction that protrudes inwardly from an inner wall of the isolator, into the flow channel in which air flows through the isolator. The obstruction diverts the flow to either side of it. Downstream of the obstruction the flow on either side of the obstruction comes together again, leading to mixing of the flow, for example including mixing of low energy and boundary layer flow with high energy flow. This mixing of flow may make for a more uniform flow at the exit of the isolator. In addition the obstruction may help fix the location of shocks within the isolator, providing longer flow mixing length in the isolator.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 17, 2020
    Assignee: Raytheon Company
    Inventor: Nicholas P. Cicchini
  • Publication number: 20190170089
    Abstract: A flight vehicle engine includes an isolator with a swept-back wedge to improve flow mixing. The wedge includes forward shock-anchoring locations, such as edges or rapidly-curved portions, that anchor oblique shocks in situations where the isolator has sufficient back pressure. The swept-back wedge may also create swept oblique shocks along its length. Boundary layer flow streamlines are diverted running parallel to or parallel but moving outward conically to the swept-wedge leading edge moving outboard and upward. The non-viscous flow outside the boundary layer is processed through the swept-back ramp shock and diverted outboard and upward as well. The outboard aft portion of the wedge at the sidewall intersection may also induce shocks and divert flow near the walls closer toward the walls and upward, and/or improve flow mixing.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 6, 2019
    Inventor: Nicholas P. Cicchini
  • Publication number: 20180347462
    Abstract: A flight vehicle has a propulsion system that includes an air inlet, an isolator (or diffuser) downstream of the air inlet, and a combustor downstream of the isolator. The isolator includes an obstruction that protrudes inwardly from an inner wall of the isolator, into the flow channel in which air flows through the isolator. The obstruction diverts the flow to either side of it. Downstream of the obstruction the flow on either side of the obstruction comes together again, leading to mixing of the flow, for example including mixing of low energy and boundary layer flow with high energy flow. This mixing of flow may make for a more uniform flow at the exit of the isolator. In addition the obstruction may help fix the location of shocks within the isolator, providing longer flow mixing length in the isolator.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventor: Nicholas P. Cicchini
  • Publication number: 20180347461
    Abstract: A flight vehicle has an engine that includes air inlet, an isolator (or diffuser) downstream of the air inlet, and a combustor downstream of the isolator. The isolator includes a bulged region that has at least one dimension, perpendicular to the direction of the air flow from the inlet to the combustor, that is at a local maximum, larger than comparable isolator dimensions both upstream and downstream of the bulged region. The bulged region stabilizes shocks within the isolator, and facilitates flow mixing. The flow diversion of high energy flow around the outermost walls of the bulged section into the center of the flow at the aft end of the isolator, increases mixing of the flow, and results in a more consistent flow profile entering the combustor over a wide range of flight conditions (Mach, altitude, angle-of-attack, yaw) and throttle settings.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 6, 2018
    Inventor: Nicholas P. Cicchini