Patents by Inventor Nicholas P. Pieczonka

Nicholas P. Pieczonka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11498839
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Grant
    Filed: June 1, 2019
    Date of Patent: November 15, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Patent number: 11342545
    Abstract: The present disclosure relates to electroactive materials for use in electrodes of lithium-ion electrochemical cells and methods of making the same, for example, methods for lithiating electroactive materials. A method of lithiating an electroactive material may include dispersing an electroactive material precursor within a room-temperature electrolyte that includes a lithium-based salt and contacting the electrolyte mixture and a lithium source so as to cause the lithium source to ionize and form lithium ions. The lithium ions may react with the electroactive material precursor to form a fully lithiated electroactive material (e.g., greater than 70% of total lithiation). The method further includes, in certain aspects, electrochemically discharging the fully lithiated electroactive material to form a lithiated electroactive material having an optimized lithiation state (e.g., less than or equal to about 40% of a first lithiation state of the fully lithiated electroactive material).
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 24, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey D. Cain, Andrew C. Bobel, Nicholas P. Pieczonka, Robert D. Schmidt, Anil K. Sachdev, Mark W. Verbrugge
  • Publication number: 20210316996
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Application
    Filed: June 1, 2019
    Publication date: October 14, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Publication number: 20210175486
    Abstract: The present disclosure relates to electroactive materials for use in electrodes of lithium-ion electrochemical cells and methods of making the same, for example, methods for lithiating electroactive materials. A method of lithiating an electroactive material may include dispersing an electroactive material precursor within a room-temperature electrolyte that includes a lithium-based salt and contacting the electrolyte mixture and a lithium source so as to cause the lithium source to ionize and form lithium ions. The lithium ions may react with the electroactive material precursor to form a fully lithiated electroactive material (e.g., greater than 70% of total lithiation). The method further includes, in certain aspects, electrochemically discharging the fully lithiated electroactive material to form a lithiated electroactive material having an optimized lithiation state (e.g., less than or equal to about 40% of a first lithiation state of the fully lithiated electroactive material).
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey D. CAIN, Andrew C. BOBEL, Nicholas P. PIECZONKA, Robert D. SCHMIDT, Anil K. SACHDEV, Mark W. VERBRUGGE
  • Publication number: 20200377370
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Application
    Filed: June 1, 2019
    Publication date: December 3, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Publication number: 20200024767
    Abstract: Systems and methods for growth of multi-component single crystals are described. A first solution is flowed over a surface of a seed crystal coupled to a nozzle such that a plurality of first ions solvated in the first solution and a plurality of second ions in a second solution combine on the surface of the seed crystal to grow the single-crystal thereon. The first solution and the second solution are immiscible. A feed tank is fluidly coupled to the at least one nozzle and includes the first solution. In some aspects, the nozzle is configured to flow both the first solution and the second solution over the seed crystal.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 23, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Zhongyi Liu, Louis G. Hector, JR., Xiaosong Huang, Nicholas P. Pieczonka, Ingrid A. Rousseau, Michael K. Carpenter