Patents by Inventor Nicholas Paul Kwiatkowski

Nicholas Paul Kwiatkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160347755
    Abstract: The present invention relates to novel pyrimido-diazepinone compounds, methods of modulating protein kinases, including MPS1 (TTK), ERK5 (BMK1, MAPK7), polo kinase 1, 2, 3, or 4, Ack1, Ack2, Ab1, DCAMKL1, ABL1, Ab1 mutants, DCAMKL2, ARK5, BRK, MKNK2, FGFR4, TNK1, PLK1, ULK2, PLK4, PRKD1, PRKD2, PRKD3, ROS1, RPS6KA6, TAOK1, TAOK3, TNK2, Bcr-Ab1, GAK, cSrc, TPR-Met, Tie2, MET, FGFR3, Aurora, Ax1, Bmx, BTK, c-kit, CHK2, Flt3, MST2, p70S6K, PDGFR, PKB, PKC, Raf, ROCK-H, Rsk1, SGK, TrkA, TrkB and TrkC, and the use of such compounds in the treatment of various diseases, disorders or conditions.
    Type: Application
    Filed: August 8, 2016
    Publication date: December 1, 2016
    Inventors: Nathanael S. Gray, Xianming Deng, Nicholas Paul Kwiatkowski
  • Patent number: 9464091
    Abstract: The present invention relates to novel pyrimido-diazepinone compounds, methods of modulating protein kinases, including MPS1 (TTK), ERK5 (BMK1, MAPK7), polo kinase 1, 2, 3, or 4, Ack1, Ack2, Abl, DCAMKL1, ABL1, Abl mutants, DCAMKL2, ARK5, BRK, MKNK2, FGFR4, TNK1, PLK1, ULK2, PLK4, PRKD1, PRKD2, PRKD3, ROS1, RPS6KA6, TAOK1, TAOK3, TNK2, Bcr-Abl, GAK, cSrc, TPR-Met, Tie2, MET, FGFR3, Aurora, Axl, Bmx, BTK, c-kit, CHK2, Flt3, MST2, p70S6K, PDGFR, PKB, PKC, Raf, ROCK-H, Rsk1, SGK, TrkA, TrkB and TrkC, and the use of such compounds in the treatment of various diseases, disorders or conditions.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 11, 2016
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Nathanael S. Gray, Xianming Deng, Nicholas Paul Kwiatkowski
  • Publication number: 20160122357
    Abstract: The present invention relates to novel pyrimido-diazepinone compounds, methods of modulating protein kinases, including MPS1 (TTK), ERK5 (BMK1, MAPK7), polo kinase 1, 2, 3, or 4, Ack1, Ack2, Abl, DCAMKL1, ABL1, Abl mutants, DCAMKL2, ARK5, BRK, MKNK2, FGFR4, TNK1, PLK1, ULK2, PLK4, PRKD1, PRKD2, PRKD3, ROS1, RPS6KA6, TAOK1, TAOK3, TNK2, Bcr-Abl, GAK, cSrc, TPR-Met, Tie2, MET, FGFR3, Aurora, Axl, Bmx, BTK, c-kit, CHK2, Flt3, MST2, p70S6K, PDGFR, PKB, PKC, Raf, ROCK-H, Rsk1, SGK, TrkA, TrkB and TrkC, and the use of such compounds in the treatment of various diseases, disorders or conditions.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 5, 2016
    Inventors: Nathanael S. Gray, Xianming Deng, Nicholas Paul Kwiatkowski
  • Publication number: 20160122323
    Abstract: The present invention provides novel compounds of Formula (I), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, prodrugs, and compositions thereof. Also provided are methods and kits involving the inventive compounds or compositions for treating or preventing proliferative diseases (e.g., cancers (e.g., leukemia, lymphoma, melanoma, multiple myeloma, breast cancer, Ewing's sarcoma, osteosarcoma, brain cancer, neuroblastoma, lung cancer), benign neoplasms, angiogenesis, inflammatory diseases, autoinflammatory diseases, and autoimmune diseases) in a subject. Treatment of a subject with a proliferative disease using a compound or composition of the invention may inhibit the aberrant activity of a kinase, such as cyclin-dependent kinase (CDK) (e.g., cyclin-dependent kinase 7 (CDK7)), and therefore, induce cellular apoptosis and/or inhibit transcription in the subject.
    Type: Application
    Filed: October 18, 2013
    Publication date: May 5, 2016
    Applicant: DANA-FARBER CANCER INSTITUTE, INC.
    Inventors: Nathanael Gray, Tinghu ZHANG, Nicholas Paul KWIATKOWSKI
  • Publication number: 20160051619
    Abstract: The invention relates to methods of treating protein degradation disorders, such cellular proliferative disorders (e.g., cancer) and protein deposition disorders (e.g., neurodegenerative disorders). The invention provides methods and pharmaceutical compositions for treating these diseases using aggresome inhibitors or combinations of aggresome inhibitors and proteasome inhibitors. The invention further relates to methods and pharmaceutical compositions for treating multiple myeloma. New HDAC/TDAC inhibitors and aggresome inhibitors are also provided as well as synthetic methodologies for preparing these compounds.
    Type: Application
    Filed: April 6, 2015
    Publication date: February 25, 2016
    Applicants: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Kenneth C. Anderson, James E. Bradner, Edward Franklin Greenberg, Teru Hideshima, Nicholas Paul Kwiatkowski, Ralph Mazitschek, Stuart L. Schreiber, Jared Shaw, Stephen J. Haggarty
  • Patent number: 8999289
    Abstract: The invention relates to methods of treating protein degradation disorders, such cellular proliferative disorders (e.g., cancer) and protein deposition disorders (e.g., neurodegenerative disorders). The invention provides methods and pharmaceutical compositions for treating these diseases using aggresome inhibitors or combinations of aggresome inhibitors and proteasome inhibitors. The invention further relates to methods and pharmaceutical compositions for treating multiple myeloma. New HDAC/TDAC inhibitors and aggresome inhibitors are also provided as well as synthetic methodologies for preparing these compounds.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: April 7, 2015
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Kenneth C. Anderson, James E. Bradner, Edward Franklin Greenberg, Teru Hideshima, Nicholas Paul Kwiatkowski, Ralph Mazitschek, Stuart L. Schreiber, Jared Shaw, Stephen J. Haggarty
  • Patent number: 8304451
    Abstract: In recognition of the need to develop novel therapeutic agents and efficient methods for the synthesis thereof, the present invention provides novel inhibitors of histone deacetylases, tubulin deacetylases, and/or aggresome inhibitors, and pharmaceutically acceptable salts and derivatives thereof. The inventive compounds fall into two classes—“isotubacin” class and “isoisotubacin” class—all of which include a 1,3-dioxane core. The present invention further provides methods for treating disorders regulated by histone deacetylase activity, tubulin deacetylase activity, and/or the aggresome (e.g., proliferative diseases, cancer, inflammatory diseases, protozoal infections, protein degradation disorders, protein deposition disorders, etc.) comprising administering a therapeutically effective amount of an inventive compound to a subject in need thereof. The present invention also provides methods for preparing compounds of the invention.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: November 6, 2012
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Ralph Mazitschek, Nicholas Paul Kwiatkowski, James Elliot Bradner
  • Publication number: 20120040961
    Abstract: The present invention relates to novel pyrimido-diazepinone compounds, methods of modulating protein kinases, including MPS1 (TTK), ERK5 (BMK1, MAPK7), polo kinase 1, 2, 3, or 4, Ack1, Ack2, AbI, DCAMKL1, ABL1, AbI mutants, DCAMKL2, ARK5, BRK, MKNK2, FGFR4, TNK1, PLK1, ULK2, PLK4, PRKD1, PRKD2, PRKD3, ROS 1, RPS6KA6, TAOK1, TAOK3, TNK2, Bcr-Abl, GAK, cSrc, TPR-Met, Tie2, MET, FGFR3, Aurora, AxI, Bmx, BTK, c-kit, CHK2, Flt3, MST2, p70S6K, PDGFR, PKB, PKC, Raf, ROCK-H, Rsk1, SGK, TrkA, TrkB and TrkC, and the use of such compounds in the treatment of various diseases, disorders or conditions.
    Type: Application
    Filed: January 6, 2010
    Publication date: February 16, 2012
    Applicant: DANA-FARBER CANCER INSTITUTE
    Inventors: Nathanael S. Gray, Xianming Deng, Nicholas Paul Kwiatkowski
  • Publication number: 20090209590
    Abstract: In recognition of the need to develop novel therapeutic agents and efficient methods for the synthesis thereof, the present invention provides novel inhibitors of histone deacetylases, tubulin deacetylases, and/or aggresome inhibitors, and pharmaceutically acceptable salts and derivatives thereof. The inventive compounds fall into two classes—“isotubacin” class and “isoisotubacin” class—all of which include a 1,3-dioxane core. The present invention further provides methods for treating disorders regulated by histone deacetylase activity, tubulin deacetylase activity, and/or the aggresome (e.g., proliferative diseases, cancer, inflammatory diseases, protozoal infections, protein degradation disorders, protein deposition disorders, etc.) comprising administering a therapeutically effective amount of an inventive compound to a subject in need thereof. The present invention also provides methods for preparing compounds of the invention.
    Type: Application
    Filed: May 2, 2007
    Publication date: August 20, 2009
    Inventors: Ralph Mazitschek, Nicholas Paul Kwiatkowski, James Elliot Bradner