Patents by Inventor Nicholas R. Adam

Nicholas R. Adam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108331
    Abstract: Disclosed is a surgical instrument for treating tissue in a surgical procedure. The surgical instrument comprises an end effector, comprising an anvil, and a staple cartridge. The surgical instrument further comprises a drive train operably coupled to the end effector, a motor configured to motivate the drive train based on a default control algorithm to affect a tissue treatment motion of the end effector, and a sensor configured to monitor an independent parameter of the surgical procedure. The independent parameter is independent of the motion of the end effector. The surgical instrument further comprises a control circuit coupled to the motor and the sensor. The control circuit is configured to receive an input from the sensor indicative of the independent parameter, and adjust the default control algorithm based on the independent parameter.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Michael J. Vendely, Shane R. Adams, Nicholas J. Ross
  • Publication number: 20240108334
    Abstract: Methods, devices, and systems for controlling a tissue-treatment motion by a surgical instrument are disclosed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Michael J. Vendely, Shane R. Adams, Nicholas J. Ross, Matthew D. Cowperthwait, Jason L. Harris, Kevin M. Fiebig, Eric B. LaFay, Jose Luis De Cordoba Matilla, Raymond E. Parfett, Curtis A. Maples, Sarah A. Worthington, Jacqueline C. Aronhalt
  • Publication number: 20240108335
    Abstract: A surgical instrument is disclosed including an end effector configurable between an open state and a clamped state, a firing member movable from an unfired position toward a fired position during a firing stroke, a manually-driveable closure system, a motor-powered firing system, and a control system. The motor-powered firing system is configured to drive the firing member through the firing stroke. The control system is configured to detect, at a first time point, the end effector reaching the clamped state with the manually-driveable closure system, detect, at a second time point, the actuation of the motor-powered firing system, set a firing motion parameter of the motor-powered firing system based on an elapsed time from the first time point to the second time point, and drive the firing member through the firing stroke with the motor-powered firing system using the firing motion parameter.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Taylor W. Aronhalt, Nicholas J. Ross, Matthew D. Cowperthwait
  • Publication number: 20240108329
    Abstract: A surgical instrument system comprising a motor system and a control circuit is disclosed. The motor system comprises a motor and a drive train coupleable to the motor and configured to actuate a firing member through a staple firing stroke. The control circuit is coupled to the motor, wherein the control circuit comprises a motor controller configured to control the motor, and wherein, during the staple firing stroke, the control circuit is configured to actuate the firing member through the staple firing stroke, monitor a parameter of the motor system during the staple firing stroke, identify when the firing member is within an active adjustment portion of the staple firing stroke; and automatically adjust, at a frequency, tuning parameters of the motor controller with based on the monitored parameter of the motor system during the active adjustment portion of the staple firing stroke.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Matthew D. Cowperthwait, Nicholas J. Ross, Shane R. Adams, Eric B. LaFay, Sarah A. Worthington
  • Publication number: 20240108342
    Abstract: A surgical instrument comprising an end effector, a firing member movable from an unfired position toward a fired position during a firing stroke, a firing system comprising a motor, and a control system. The firing system is configured to drive the firing member through the firing stroke. The control system is configured to drive the firing member from the unfired position toward the fired position with the firing system, detect a force to fire the firing member toward the fired position, pause advancement of the firing member for a first amount of time, based on the detected force to fire, resume advancement of the firing member after the first amount of time, and pause advancement of the firing member for a second amount of time, wherein the second amount of time is based on the first amount of time.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Taylor W. Aronhalt, Nicholas J. Ross, Shane R. Adams
  • Publication number: 20240108333
    Abstract: A surgical instrument system comprising a drive train and a control circuit is disclosed. The drive train comprises a motor and a shaft actuatable by the motor to actuate a function of an end effector. The control circuit is coupled to the motor, wherein the control circuit is configured to determine a relative excess capacity of the drive train, compare the relative excess capacity to a predetermined shifting threshold, and increase the speed of the motor based on the relative excess capacity exceeding the predetermined shifting threshold.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Matthew D. Cowperthwait, Nicholas J. Ross, Shane R. Adams
  • Publication number: 20240108421
    Abstract: A surgical instrument system comprising a motor system and a control circuit is disclosed. The motor system comprises a motor and a drive train coupleable to the motor and configured to actuate a firing member through a staple firing stroke. The control circuit is coupled to the motor, wherein, during the staple firing stroke, the control circuit is configured to monitor current draw of the motor and initiate an oscillating impact signal sequence to the motor based on the monitored current draw of the motor. The oscillating impact signal comprises a pulse amplitude selected based on the monitored current draw and a pulse width based on the monitored current draw.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Nicholas J. Ross, Shane R. Adams
  • Publication number: 20240108338
    Abstract: A surgical stapling system includes a motor, a gear reducer assembly, a drive train, and a motor controller. A method of controlling the motor includes applying a first signal to the motor, receiving drive train operational data, comparing the drive train data to baseline data, and applying a signal having a different shape than the first signal to the motor. A method of characterizing the motor includes transmitting a perturbation signal, receiving motor function parameters, determining stapler system characteristics, and adjusting a controller function. A method of controlling a stepper motor includes applying a signal to the stepper motor, receiving stepper motor operational data, comparing the data to baseline data, and adjusting the signal. Another method of controlling the motor includes receiving motor rotational data, receiving gear rotation data, calculating a mechanical transfer function, determining non-idealities of the stapling system, and modifying a control signal based on the non-idealities.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Eric B. LaFay, Taylor W. Aronhalt, Jose Luis De Cordoba Matilla, Nicholas J. Ross, Matthew D. Cowperthwait
  • Publication number: 20240112798
    Abstract: Disclosed is a surgical system for use with a surgical device. The surgical system comprises a remote processing device comprising a device control circuit and a surgical hub configured to communicably couple to the remote processing device and the surgical device. The surgical hub comprises a hub control circuit, wherein the hub control circuit and the device control circuit perform distributed processing. The surgical hub control circuit is configured to transmit a synchronization feature to the remote processing device, transmit a first subset of data associated with the surgical device to the remote processing device, perform a second analysis on a second subset of the data, determine a second result based on the second analysis, receive a first result from the remote processing device and synchronization data of the first result, assess a synchronicity of the first result and the second result based on the synchronization data.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Nicholas J. Ross, Shane R. Adams, Jason L. Harris
  • Publication number: 20240108336
    Abstract: A surgical instrument is disclosed including a motor-powered firing system comprising a firing motor, a motor-powered closure system comprising a closure motor, and a control system. The firing motor is configured to drive a firing member between an unfired position and a fired position. The closure motor is configured to transition an end effector between an open state and a clamped state. The control system is configured to set a first parameter of the motor-powered closure system, based on a received first input, drive the end effector toward the clamped state with the motor-powered closure system using the first parameter, monitor a second parameter associated with the end effector transitioning toward the clamped state, set a third parameter of the motor-powered firing system, based on a received second input and the monitored second parameter, and drive the firing member toward the fired position using the third parameter.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Jason L. Harris, Nicholas J. Ross
  • Publication number: 20240108339
    Abstract: A surgical stapling system includes an anvil, a blade, a motor and gear assembly, a motor power supply, and a motor controller. A method of controlling the motor includes receiving first and second data indicative of operations of the motor under first and second conditions, respectively, and adjusting a motor control signal based on a difference between the first and second data. Another method includes receiving initial manufacture motor and gear assembly data from a manufacture and operational data during an initial use of the system, and adjusting parameters of the control signal based on a difference between the manufacture data and the operational data. Another method includes controlling a pulse-width modulated (PWM) motor control signal, receiving data regarding an interaction between the blade and a tissue clamped by the anvil, and adjusting a frequency of the PWM signal based on the data related to the interaction.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Kevin M. Fiebig, Raymond E. Parfett, Curtis A. Maples, Nicholas J. Ross, Taylor W. Aronhalt
  • Publication number: 20240108340
    Abstract: A surgical instrument system comprising a motor system and a control circuit is disclosed. The motor system comprises a motor and a drive train movable by the motor to actuate a firing member through a staple firing stroke. The control circuit is coupled to the motor, wherein, during the staple firing stroke, the control circuit is configured to perform a first sensory action to determine if a speed of the motor can be increased to a first target speed, monitor a result of the first sensory action, adjust a parameter of a subsequent sensory action based on the monitored result of the first sensory action, and perform the subsequent sensory action with the adjusted parameter.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Kevin M. Fiebig, Matthew D. Cowperthwait, Nicholas J. Ross, Shane R. Adams
  • Patent number: 11931029
    Abstract: A surgical instrument includes a body, a shaft, a motor, a firing assembly, an end effector, and a control circuit. The motor is activatable to actuate the firing assembly through a firing stroke to staple and sever tissue with the end effector. The control circuit is configured to monitor one or more use metrics of the surgical instrument. Responsive to at least one of the one or more use metrics exceeding a predetermined threshold, the control circuit is further configured to initiate at least one of providing a notification to a user or disabling the firing assembly.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: March 19, 2024
    Assignee: Cilag GmbH International
    Inventors: Nicholas J. Ross, Joseph D. Paulowski, Shane R. Adams, Matthew D. Cowperthwait
  • Patent number: 11931037
    Abstract: A surgical instrument comprising an end effector, a firing member movable from an unfired position toward a fired position during a firing stroke, a firing system comprising a motor, and a control system. The firing system is configured to drive the firing member through the firing stroke. The control system is configured to drive the firing member from the unfired position toward the fired position with the firing system, detect a force to fire the firing member toward the fired position, pause advancement of the firing member for a first amount of time, based on the detected force to fire, resume advancement of the firing member after the first amount of time, and pause advancement of the firing member for a second amount of time, wherein the second amount of time is based on the first amount of time.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: March 19, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Frederick E. Shelton, IV, Jason L Harris, Taylor W. Aronhalt, Nicholas J. Ross, Shane R. Adams
  • Patent number: 11918275
    Abstract: Disclosed is a method of adapting energy modality due to a short circuit or tissue type grasped in the jaws of an end effector of a surgical instrument. The method includes selecting an electrode in an array of segmented electrodes during a pre-energy activation cycle. The method includes applying a sub-therapeutic electrical signal to the selected electrode to differentiate between a shorted electrode and low impedance tissue grasped in the jaws of the end effector. The method includes determining the selected electrode is shorted based on a measured electrical parameter received by the control circuit after applying the sub-therapeutic electrical signal and blending monopolar and bipolar RF energy. The method includes determining that the selected electrode is shorted and switching output energy of the RF generator between monopolar and bipolar RF energy.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 5, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Shane R. Adams, Daniel V. Boguszewski, Nicholas J. Ross
  • Publication number: 20240065695
    Abstract: A method for authenticating the compatibility of a staple cartridge with a surgical instrument is disclosed. The method can comprise inserting a staple cartridge into a surgical instrument, receiving a first signal from a first RFID tag on a first component of the staple cartridge with an RFID reader system, receiving a second signal from a second RFID tag on a second component of the staple cartridge with the RFID reader system, comparing the first signal and the second signal to stored data for a compatible staple cartridge, and locking a staple firing system of the surgical instrument if the first signal and the second signal do not match the stored data for a compatible staple cartridge.
    Type: Application
    Filed: June 27, 2023
    Publication date: February 29, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Nicholas J. Ross, Jason L. Harris
  • Patent number: 11799896
    Abstract: Various methods, apparatuses/systems, and media for implementing a vulnerability management module are provided. A receiver receives a request for dynamically scanning vulnerability of a target computing device based on testable vulnerability criteria extracted from a database. A processor dynamically executes the testable vulnerability criteria from the SCCM based on the received request; creates a static SCCM advertisement with a dynamic pre/post validation check capability based on a result of the dynamically executing the testable vulnerability criteria; reports a success or a failure of the static SCCM advertisement related to the testable vulnerability criteria to indicate whether a vulnerability exists within the target computing device; and automatically remediates the vulnerability when it is determined that the vulnerability exists within the target computing device.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 24, 2023
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Andrew J. Mullin, Hai Van Nguyen, Binh Nguyen, Jason S. Thacker, Nicholas R. Adam
  • Publication number: 20230244801
    Abstract: Systems and methods for maintaining immutable data access logs with privacy are disclosed. In one embodiment, in a cloud provider comprising at least one computer processor, the cloud provider having a plurality of clients, a method for maintaining immutable data access logs with privacy may include: (1) receiving data from a data owner, wherein the data owner is one of the clients; (2) storing the data in cloud storage; (3) executing an action or condition that impacts the data stored in cloud storage; (4) generating a log entry associated with the action or condition; (5) encrypting at least a portion of the log entry with a public key for the data owner; and (6) committing the log entry including the encrypted portion to a distributed ledger so that the committed log entry is immutable and cryptographically verifiable.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: Andrew J. MULLIN, Jason S. THACKER, Nicholas R. ADAM, Hai Van NGUYEN, Binh NGUYEN
  • Patent number: 11716333
    Abstract: A system and method for assigning a single use real-time privilege are disclosed. A processor validates credentials of a user based on comparing credentials data of the user with pre-stored reference data in response to receiving a request to access a target computer to execute a single process; creates a single use blockchain private key for the single process and generates the passcode in response to a successful validation of the credentials. The processor also writes request data corresponding to the private key and the passcode onto a blockchain. In response to receiving user login data and the passcode to access the target computer, the processor validates passcode by confirming that the passcode matches the request data wrote in the blockchain; and assigns a single use real-time privilege to the user for executing the single process in response to successful validation of both the passcode and the received request.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: August 1, 2023
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Andrew J Mullin, Hai Van Nguyen, Jason S Thacker, Nicholas R Adam, Binh Nguyen
  • Patent number: 11663347
    Abstract: Systems and methods for maintaining immutable data access logs with privacy are disclosed. In one embodiment, in a cloud provider comprising at least one computer processor, the cloud provider having a plurality of clients, a method for maintaining immutable data access logs with privacy may include: (1) receiving data from a data owner, wherein the data owner is one of the clients; (2) storing the data in cloud storage; (3) executing an action or condition that impacts the data stored in cloud storage; (4) generating a log entry associated with the action or condition; (5) encrypting at least a portion of the log entry with a public key for the data owner; and (6) committing the log entry including the encrypted portion to a distributed ledger so that the committed log entry is immutable and cryptographically verifiable.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: May 30, 2023
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Andrew J. Mullin, Jason S. Thacker, Nicholas R. Adam, Hai Van Nguyen, Binh Nguyen