Patents by Inventor Nicholas Raymond Cox

Nicholas Raymond Cox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250042935
    Abstract: The present invention relates to a photochemical process for the manufacturing of a C-terminal ?-amide, which are a class of compounds that represent up to half of all biologically relevant peptide hormones. The invention provides mild, broad in scope, economically efficient process, which is suitable for large scale manufacturing.
    Type: Application
    Filed: December 9, 2022
    Publication date: February 6, 2025
    Inventors: Michael Richard Harris, Sydnee Wong, David Thomas Hymel, Wouter Frederik Johan Hogendorf, Felix Wojcik, Nicholas Raymond Cox, Benjamin Matthew Williams, Asmus Ringlebjerg Mortensen
  • Publication number: 20240190938
    Abstract: The present invention relates to novel peptides that are derivatives of glucose-dependent insulinotropic polypeptide (GIP) analogues having improved physical stability in solution and a protracted profile of action. More particular the invention relates to such peptides that are agonists at the GIP receptor and to their use in weight management or for treatment of diseases such as obesity, diabetes or non-alcoholic steatohepatitis (NASH).
    Type: Application
    Filed: February 3, 2023
    Publication date: June 13, 2024
    Inventors: Wouter Frederik Johan Hogendorf, Henning Thoegersen, Nicholas Raymond Cox, Patrick J. Knerr, Richard DiMarchi, Brian Finan, Jesper F. Lau, Steffen Reedtz-Runge, Fa Liu
  • Publication number: 20230233650
    Abstract: Ucn2 derivatives comprising a peptide and a substituent with high potency, high physical and high chemical stability, suitable for administration to humans, and their medical use in treatment and/or prevention of obesity and/or diabetes.
    Type: Application
    Filed: July 15, 2022
    Publication date: July 27, 2023
    Inventors: Chien Li, Nicholas Raymond Cox, Jason O'Neil, Patrick William Garibay, Berit Christoffersen Gyrstinge, Hans Dennis Aasberg, Lennart Lykke, Nikolaj Kulahin Roed
  • Patent number: 11633459
    Abstract: The present invention relates to novel peptides that are derivatives of glucose-dependent insulinotropic polypeptide (GIP) analogues having improved physical stability in solution and a protracted profile of action. More particular the invention relates to such peptides that are agonists at the GIP receptor and to their use in weight management or for treatment of diseases such as obesity, diabetes or non-alcoholic steatohepatitis (NASH).
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 25, 2023
    Assignee: Novo Nordisk A/S
    Inventors: Wouter Frederik Johan Hogendorf, Henning Thoegersen, Nicholas Raymond Cox, Patrick J. Knerr, Richard Dimarchi, Brian Finan, Jesper F. Lau, Steffen Reedtz-Runge, Fa Liu
  • Publication number: 20220000982
    Abstract: The present invention relates to novel peptides that are derivatives of glucose-dependent insulinotropic polypeptide (GIP) analogues having improved physical stability in solution and a protracted profile of action. More particular the invention relates to such peptides that are agonists at the GIP receptor and to their use in weight management or for treatment of diseases such as obesity, diabetes or non-alcoholic steatohepatitis (NASH).
    Type: Application
    Filed: May 3, 2019
    Publication date: January 6, 2022
    Inventors: Wouter Frederik Johan Hogendorf, Henning Thoegersen, Nicholas Raymond Cox, Patrick J. Knerr, Richard Dimarchi, Brian Finan, Jesper F. Lau, Steffen Reedtz-Runge, Fa Liu
  • Publication number: 20210205292
    Abstract: Compounds and methods are provided for inhibiting a CREB-CBP protein-protein interaction in a sample. In some cases, the method includes modulating transcription of CREB in a cell that overexpresses CREB. Also provided are methods of inhibiting the proliferation of a cancer cell. The subject CREB transcription inhibitor compounds include a substituted salicylamide or a prodrug thereof. Methods of alleviating symptoms associated with cancer (e.g., Acute Myeloid Leukemia (AML) or Acute Lymphomblastic Leukemia (ALL)) in a subject in need thereof are also provided. Pharmaceutical compositions including the subject compounds find use in treating cancer. The subject compounds may be formulated or provided to a subject in combination with a second agent, e.g. an anticancer agent.
    Type: Application
    Filed: March 10, 2017
    Publication date: July 8, 2021
    Inventors: Kathleen Miho Sakamoto, Mark Smith, Hee-Don Chae, Bryan Mitton, Nicholas Raymond Cox
  • Patent number: 10604555
    Abstract: The present invention relates to novel peptides that are derivatives of glucose-dependent insulinotropic polypeptide (GIP) analogues having improved physical stability in solution and a protracted profile of action. More particularly the invention relates to such peptides that are agonists at the GIP receptor and to their use in weight management or for treatment of diseases such as obesity, diabetes or non-alcoholic steatohepatitis (NASH). The peptides comprise a lysine residue at a position corresponding to position 24 of hGIP(1-31), and comprise a negatively charged modifying group attached to the epsilon amino group of the lysine residue.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: March 31, 2020
    Assignee: Novo Nordisk A/S
    Inventors: Wouter Frederik Johan Hogendorf, Henning Thoegersen, Nicholas Raymond Cox, Patrick J. Knerr, Richard DiMarchi, Brian Finan, Jesper F. Lau, Steffen Reedtz-Runge, Fa Liu
  • Publication number: 20190367578
    Abstract: The present invention relates to novel peptides that are derivatives of glucose-dependent insulinotropic polypeptide (GIP) analogues having improved physical stability in solution and a protracted profile of action. More particular the invention relates to such peptides that are agonists at the GIP receptor and to their use in weight management or for treatment of diseases such as obesity, diabetes or non-alcoholic steatohepatitis (NASH).
    Type: Application
    Filed: May 3, 2019
    Publication date: December 5, 2019
    Inventors: Wouter Frederik Johan Hogendorf, Henning Thoegersen, Nicholas Raymond Cox, Patrick J. Knerr, Richard DiMarchi, Brian Finan, Jesper F. Lau, Steffen Reedtz-Runge, Fa Liu