Patents by Inventor Nicholas Ryan Wheeler

Nicholas Ryan Wheeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240002287
    Abstract: An apparatus for continuous electro-thermal poling of glass or glass ceramic material, includes a lower support conveying and contacting electrode structure, an upper contacting electrode structure positioned above the lower support structure, and one or more DC bias voltage sources connected to one or both of the upper contacting structure and the lower support structure. A process for continuous electro-thermal poling of glass or glass ceramic sheets or substrates includes heating the sheet or substrate, feeding the sheet or substrate continuously or continually, while applying a DC voltage bias, and cooling the sheet or substrate to within 0-30° C. of ambient temperature.
    Type: Application
    Filed: September 12, 2023
    Publication date: January 4, 2024
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Charles Thomas McLaren, Nicholas James Smith, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Patent number: 11773015
    Abstract: An apparatus for continuous electro-thermal poling of glass or glass ceramic material, includes a lower support conveying and contacting electrode structure, an upper contacting electrode structure positioned above the lower support structure, and one or more DC bias voltage sources connected to one or both of the upper contacting structure and the lower support structure. A process for continuous electro-thermal poling of glass or glass ceramic sheets or substrates includes heating the sheet or substrate, feeding the sheet or substrate continuously or continually, while applying a DC voltage bias, and cooling the sheet or substrate to within 0-30° C. of ambient temperature.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: October 3, 2023
    Assignee: Corning Incorporated
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Charles Thomas McLaren, Nicholas James Smith, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Publication number: 20220380253
    Abstract: A glass substrate according to one or more embodiments is disclosed. The glass substrate includes an alkali-containing bulk, at least one first alkali-depleted region, and at least one second alkali-depleted region. The alkali-containing bulk has a first surface and a second surfaces with the first and second surfaces opposing one another. The at least one first alkali-depleted region extends into the alkali-containing bulk from the first surface. The at least one second alkali-depleted region extends into the alkali-containing bulk from the second surface. The first alkali-depleted region and the second alkali-depleted region are amorphous and have a substantially homogenous composition. The first alkali-depleted region in some embodiments is a first alkali-depleted surface layer that extends across the alkali-containing bulk. The first alkali-depleted region in some embodiments is plurality of first alkali-depleted regions that are spaced apart from one another.
    Type: Application
    Filed: May 19, 2022
    Publication date: December 1, 2022
    Inventors: Timothy Evan Dimond, Christopher William Drewnowski, Charles Thomas McLaren, Mardochee Reveil, Nicholas James Smith, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Publication number: 20210252639
    Abstract: A method for forming a structure includes providing a glass or glass ceramic tubular structure (110) having an interior (150) and exterior surface (160) and at least a partially closed end region (140); heating the glass or glass ceramic tubular structure (110) to at least its softening point by: providing a laser beam; directing the laser beam (130) down the interior surface of the glass or glass ceramic tubular structure (110), at least some of the laser beam (130) directed at an angle greater than a predetermined incidence angle; and the laser beam (130) impinging on the closed end region (140) where at least some of the laser beam (130) is absorbed by the closed end region (140) of the glass or glass ceramic tubular structure; and moving at least one of: the glass or glass ceramic tubular structure or the end region relative to each other to form at least a two-dimensional shape from the glass or glass ceramic tubular structure.
    Type: Application
    Filed: June 7, 2019
    Publication date: August 19, 2021
    Inventors: Michael Thomas Gallagher, Scott Michael Jarvis, Xinghua Li, Nicholas Ryan Wheeler
  • Publication number: 20210238086
    Abstract: An apparatus for continuous electro-thermal poling of glass or glass ceramic material, includes a lower support conveying and contacting electrode structure, an upper contacting electrode structure positioned above the lower support structure, and one or more DC bias voltage sources connected to one or both of the upper contacting structure and the lower support structure. A process for continuous electro-thermal poling of glass or glass ceramic sheets or substrates includes heating the sheet or substrate, feeding the sheet or substrate continuously or continually, while applying a DC voltage bias, and cooling the sheet or substrate to within 0-30° C. of ambient temperature.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 5, 2021
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Charles Thomas McLaren, Nicholas James Smith, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Patent number: 11065860
    Abstract: A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: July 20, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Scott Michael Jarvis, Xinghua Li, Moussa N'Gom, Robert Stephen Wagner, Nicholas Ryan Wheeler
  • Publication number: 20200399159
    Abstract: A apparatus for making a three-dimensional object that includes: a gripping fixture having a grip surface or a pedestal having a build surface, the grip or build surface configured to hold an end of a contiguous, preformed material; a feed system having a feed outlet positioned above the grip or build surface, the feed system configured to feed the contiguous, preformed material into a build zone between the feed outlet and the grip or build surface; and a laser delivery system arranged to direct at least one laser beam through the furnace and into the build zone to form a hot spot in the build zone; and a positioning system arranged to effect relative motion between the grip or build surface and the feed outlet. In some implementations, the apparatus for making a 3D object can also include a furnace enclosing the build zone and the feed outlet.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Christopher William Drewnowski, Michael S Fischer, Michael Thomas Gallagher, Xinghua Li, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Patent number: 10793461
    Abstract: A apparatus for making a three-dimensional object (glass, glass ceramic or ceramic) that includes: a gripping fixture 102a having a grip surface or a pedestal 102 having a build surface 130, the grip or build surface configured to hold an end of a contiguous, preformed material 106, such as a fiber or a ribbon; a feed system 100 having a feed outlet 118 positioned above the grip or build surface, the feed system configured to feed the contiguous, preformed material into a build zone between the feed outlet and the grip or build surface; and a laser delivery system 134 arranged to direct at least one laser beam through the furnace 132 and into the build zone to form a hot spot 126 in the build zone; and a positioning system 120 arranged to effect relative motion between the grip or build surface and the feed outlet. In some implementations, the apparatus for making a 3D object can also include a furnace 132 enclosing the build zone and the feed outlet.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 6, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Christopher William Drewnowski, Michael Fischer, Michael Thomas Gallagher, Xinghua Li, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Publication number: 20200031703
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Paul D. Albee, Antoine Gaston Denis Bisson, Olus Naili Boratav, Patrick Joseph Cimo, Glen Bennett Cook, Frank Coppola, Michael Thomas Gallagher, Laurent Joubaud, Irene Mona Peterson, Richard Curwood Peterson, George Clinton Shay, Nicholas Ryan Wheeler
  • Publication number: 20190352210
    Abstract: A apparatus for making a three-dimensional object (glass, glass ceramic or ceramic) that includes: a gripping fixture 102a having a grip surface or a pedestal 102 having a build surface 130, the grip or build surface configured to hold an end of a contiguous, preformed material 106, such as a fiber or a ribbon; a feed system 100 having a feed outlet 118 positioned above the grip or build surface, the feed system configured to feed the contiguous, preformed material into a build zone between the feed outlet and the grip or build surface; and a laser delivery system 134 arranged to direct at least one laser beam through the furnace 132 and into the build zone to form a hot spot 126 in the build zone; and a positioning system 120 arranged to effect relative motion between the grip or build surface and the feed outlet. In some implementations, the apparatus for making a 3D object can also include a furnace 132 enclosing the build zone and the feed outlet.
    Type: Application
    Filed: November 17, 2017
    Publication date: November 21, 2019
    Inventors: Christopher William Drewnowski, Michael Fischer, Michael Thomas Gallagher, Xinghua Li, Nicholas Ryan Wheeler, Thomas Michael Zajicek
  • Patent number: 10472269
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 12, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D Albee, Laurent Joubaud, Antoine Gaston Denis Bisson, Glen Bennett Cook
  • Publication number: 20180237329
    Abstract: A method of printing a 3D object includes feeding one or more preformed materials from a feed outlet into a build zone in which a hot spot is located and using the hot spot to selectively heat the one or more preformed materials to a viscous state. Object layers are formed by depositing portions of the preformed materials on a build surface, or on another object layer on the build surface, while effecting relative motion between the build surface and the feed outlet.
    Type: Application
    Filed: August 12, 2016
    Publication date: August 23, 2018
    Inventors: Christopher William Drewnowski, Michael Thomas Gallagher, Scott Michael Jarvis, Xinghua Li, Moussa N'Gom, Robert Stephen Wagner, Nicholas Ryan Wheeler
  • Publication number: 20170283296
    Abstract: An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
    Type: Application
    Filed: September 3, 2015
    Publication date: October 5, 2017
    Inventors: Michael Thomas Gallagher, Patrick Joseph Cimo, Nicholas Ryan Wheeler, Frank Coppola, Irene Mona Peterson, Richard Curwood Peterson, Olus Naili Boratav, George Clinton Shay, Paul D. Albee, Laurent Joubaud, Antoine Gaston Bisson, Glen Bennett Cook
  • Publication number: 20160229731
    Abstract: Push roll spools for engaging and driving softened glass tubes over a shaping mandrel. A push roll spool for use in processing a glass tube may comprise a base having first and second axially spaced ends, and multiple sheets of heat resistant material disposed on the base between the axially spaced ends, forming an axially extending stack. The stack may have a circumferential, generally U-section groove having a profile defined by the peripheral edges of multiple said sheets having different diameters. The U-section groove may be sized to engage and drive a glass tube. The U-section groove may have two contact areas at which to engage and drive a glass tube. The heat resistant material may comprise mica or a mica composition, for example mica paper or ceramic fiber millboard.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 11, 2016
    Inventors: Michael Thomas Gallagher, John Forrest Wight, JR., Nicholas Ryan Wheeler, Ralph Alfred Langensiepen, Antoine Gaston Denis Bisson, Eric Joseph Teator, Mickaël Mabrut
  • Patent number: 8991216
    Abstract: In one embodiment, a pulling roll for drawing glass sheet in a down-draw process includes a shaft member and a compliant cover assembly positioned on the shaft member. The compliant cover assembly includes at least one traction disk and at least one deflection limiting disk positioned on the shaft member. The at least one traction disk includes an annular hub and a plurality of spring elements integrally formed with the annular hub. The at least one deflection limiting disk includes at least one deflection limiting element positioned on each deflection limiting disk. The at least one deflection limiting element engages at least a portion of at least one traction disk upon a predetermined amount of inward radial deflection of the plurality of spring elements, thereby limiting the inward radial deflection of the plurality of spring elements.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 31, 2015
    Assignee: Corning Incorporated
    Inventors: Michael Thomas Gallagher, George Clinton Shay, Izhar Zahoor Ahmed, Nicholas Ryan Wheeler, Ralph Alfred Langensiepen
  • Publication number: 20140130551
    Abstract: In one embodiment, a pulling roll for drawing glass sheet in a down-draw process includes a shaft member and a compliant cover assembly positioned on the shaft member. The compliant cover assembly includes at least one traction disk and at least one deflection limiting disk positioned on the shaft member. The at least one traction disk includes an annular hub and a plurality of spring elements integrally formed with the annular hub. The at least one deflection limiting disk includes at least one deflection limiting element positioned on each deflection limiting disk. The at least one deflection limiting element engages at least a portion of at least one traction disk upon a predetermined amount of inward radial deflection of the plurality of spring elements, thereby limiting the inward radial deflection of the plurality of spring elements.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Inventors: Michael Thomas Gallagher, George Clinton Shay, Izhar Zahoor Ahmed, Nicholas Ryan Wheeler, Ralph Alfred Langensiepen