Patents by Inventor Nicholas S. HAEHN

Nicholas S. HAEHN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136326
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 25, 2024
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Ram S. VISWANATH, Nicholas NEAL, Mitul MODI
  • Patent number: 11942393
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to a substrate that includes a first region to be coupled with a die, and a second region separate and distinct from the first region that has a lower thermal conductivity than the first region, where the second region is to thermally insulate the first region when the die is coupled to the first region. The thermal insulation of the second region may be used during a TCB process to increase the quality of each of the interconnects of the die by promoting a higher temperature at the connection points to facilitate full melting of solder.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Wei Li, Edvin Cetegen, Nicholas S. Haehn, Mitul Modi, Nicholas Neal
  • Patent number: 11901333
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Wei Li, Edvin Cetegen, Nicholas S. Haehn, Ram S. Viswanath, Nicholas Neal, Mitul Modi
  • Patent number: 11832419
    Abstract: Embodiments include semiconductor packages. A semiconductor package includes dies on a package substrate, an integrated heat spreader (IHS) with a lid and sidewalls over the dies and package substrate, and a heatsink and a thermal interface material respectively on the IHS. The semiconductor package includes a vapor chamber defined by a surface of the package substrate and surfaces of the lid and sidewalls, and a wick layer in the vapor chamber. The wick layer is on the dies, package substrate, and IHS, where the vapor chamber has a vapor space defined by surfaces of the wick layer and lid of the IHS. The sidewalls are coupled to the package substrate with a sealant that hermetically seals the vapor chamber with the surfaces of the package substrate and the sidewalls and lid. The wick layer has a uniform or non-uniform thickness, and has porous materials including metals, powders, or graphite.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 28, 2023
    Assignee: Intel Corporation
    Inventors: Nicholas Neal, Nicholas S. Haehn, Je-Young Chang, Kyle Arrington, Aaron McCann, Edvin Cetegen, Ravindranath V. Mahajan, Robert L. Sankman, Ken P. Hackenberg, Sergio A. Chan Arguedas
  • Publication number: 20230343723
    Abstract: Embodiments disclosed herein include electronic packages with thermal solutions. In an embodiment, an electronic package comprises a package substrate, a first die electrically coupled to the package substrate, and an integrated heat spreader (IHS) that is thermally coupled to a surface of the first die. In an embodiment, the IHS comprises a main body having an outer perimeter, and one or more legs attached to the outer perimeter of the main body, wherein the one or more legs are supported by the package substrate. In an embodiment, the electronic package further comprises a thermal block between the package substrate and the main body of the IHS, wherein the thermal block is within the outer perimeter of the main body.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Nicholas NEAL, Nicholas S. HAEHN, Sergio CHAN ARGUEDAS, Edvin CETEGEN, Jacob VEHONSKY, Steve S. CHO, Rahul JAIN, Antariksh Rao Pratap SINGH, Tarek A. IBRAHIM, Thomas HEATON
  • Patent number: 11776864
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment an electronic package comprises a package substrate, and a first level interconnect (FLI) bump region on the package substrate. In an embodiment, the FLI bump region comprises a plurality of pads, and a plurality of bumps, where each bump is over a different one of the plurality of pads. In an embodiment, the electronic package further comprises a guard feature adjacent to the FLI bump region. In an embodiment, the guard feature comprises, a guard pad, and a guard bump over the guard pad, wherein the guard feature is electrically isolated from circuitry of the electronic package.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Jacob Vehonsky, Nicholas S. Haehn, Thomas Heaton, Steve S. Cho, Rahul Jain, Tarek Ibrahim, Antariksh Rao Pratap Singh, Edvin Cetegen, Nicholas Neal, Sergio Chan Arguedas
  • Publication number: 20230238355
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Application
    Filed: March 28, 2023
    Publication date: July 27, 2023
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Ram S. VISWANATH, Nicholas NEAL, Mitul MODI
  • Publication number: 20230087810
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, an electronic package comprises a plurality of stacked layers. In an embodiment, a first trace is on a first layer, wherein the first trace has a first thickness. In an embodiment, a second trace is on the first layer, wherein the second trace has a second thickness that is greater than the first thickness. In an embodiment, a second layer is over the first trace and the second trace.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Jeremy D. ECTON, Kristof DARMAWIKARTA, Suddhasattwa NAD, Oscar OJEDA, Bai NIE, Brandon C. MARIN, Gang DUAN, Jacob VEHONSKY, Onur OZKAN, Nicholas S. HAEHN
  • Publication number: 20230086180
    Abstract: A semiconductor device may include a first plate-like element having a first substantially planar connection surface with a first connection pad and a second plate-like element having a second substantially planar connection surface with a second connection pad corresponding to the first connection pad. The device may also include a connection electrically and physically coupling the first and second plate-like elements and arranged between the first and second connection pads. The connection may include a deformed elongate element arranged on the first connection pad and extending toward the second connection pad and solder in contact with the second connection pad and the elongate element.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 23, 2023
    Inventors: Onur Ozkan, Edvin Cetegen, Steve Cho, Nicholas S. Haehn, Jacob Vehonsky, Gang Duan
  • Publication number: 20230086649
    Abstract: An apparatus is described. The apparatus includes I/O structures having pads and solder balls to couple with a semiconductor chip, wherein, a first subset of pads and/or solder balls of the pads and solder balls that approach the semiconductor chip during coupling of the semiconductor chip to the I/O structures are thinner than a second subset of pads and/or solder balls of the pads and solder balls that move away from the semiconductor chip during the coupling of the semiconductor chip to the I/O structures.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 23, 2023
    Inventors: Onur OZKAN, Edvin CETEGEN, Steve CHO, Nicholas S. HAEHN, Jacob VEHONSKY
  • Publication number: 20220384306
    Abstract: A thermal interface structure for facilitating heat transfer from an integrated circuit device to a heat dissipation device may be fabricated to include at least one conductive wire structure wherein each conductive wire structure includes a conductive wire having a first end, a first barrier layer adjacent the first end of the conductive wire, and a first solder structure adjacent the first barrier layer. The thermal interface structure may further include an encapsulation material substantially encapsulating each conductive wire structure and a first solder layer abutting the encapsulation material and abutting the first solder structure of each conductive wire structure.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Applicant: Intel Corporation
    Inventors: Weihua Tang, Chandra Mohan Jha, Nicholas S. Haehn
  • Patent number: 11502008
    Abstract: An integrated circuit assembly including a substrate having a surface including at least one area including contact points operable for connection with an integrated circuit die; and at least one ring surrounding the at least one area, the at least one ring including an electrically conductive material. A method of forming an integrated circuit assembly including forming a plurality of electrically conductive rings around a periphery of a die area of a substrate selected for attachment of at least one integrated circuit die, wherein the plurality of rings are formed one inside the other; and forming a plurality of contact points in the die area.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Nicholas S. Haehn, Edvin Cetegen, Shankar Devasenathipathy
  • Publication number: 20210249330
    Abstract: Embodiments herein relate to systems, techniques, and/or processes directed to a composite thermal matrix structure to provide thermal conductivity within a package. The composite thermal matrix may include a first material that is substantially solid and a second material that is liquid and absorbed into the first material. A package may include the composite thermal matrix within an integrated heat sink coupled with a printed circuit board and encapsulating one or more die where the thermal matrix structure is in a state of compressive stress within the heat sink. The thermal matrix structure may expand and contract as the heat sink warps during thermal cycling to maintain constant thermal conductivity with low stress on the package.
    Type: Application
    Filed: February 6, 2020
    Publication date: August 12, 2021
    Inventors: Nicholas S. Haehn, Nicholas Neal
  • Publication number: 20210242107
    Abstract: Embodiments herein relate to systems, apparatuses, or processes directed to a substrate that includes a first region to be coupled with a die, and a second region separate and distinct from the first region that has a lower thermal conductivity than the first region, where the second region is to thermally insulate the first region when the die is coupled to the first region. The thermal insulation of the second region may be used during a TCB process to increase the quality of each of the interconnects of the die by promoting a higher temperature at the connection points to facilitate full melting of solder.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 5, 2021
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Mitul MODI, Nicholas NEAL
  • Publication number: 20210195798
    Abstract: Embodiments include semiconductor packages. A semiconductor package includes dies on a package substrate, an integrated heat spreader (IHS) with a lid and sidewalls over the dies and package substrate, and a heatsink and a thermal interface material respectively on the IHS. The semiconductor package includes a vapor chamber defined by a surface of the package substrate and surfaces of the lid and sidewalls, and a wick layer in the vapor chamber. The wick layer is on the dies, package substrate, and IHS, where the vapor chamber has a vapor space defined by surfaces of the wick layer and lid of the IHS. The sidewalls are coupled to the package substrate with a sealant that hermetically seals the vapor chamber with the surfaces of the package substrate and the sidewalls and lid. The wick layer has a uniform or non-uniform thickness, and has porous materials including metals, powders, or graphite.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 24, 2021
    Inventors: Nicholas NEAL, Nicholas S. HAEHN, Je-Young CHANG, Kyle ARRINGTON, Aaron MCCANN, Edvin CETEGEN, Ravindranath V. MAHAJAN, Robert L. SANKMAN, Ken P. HACKENBERG, Sergio A. CHAN ARGUEDAS
  • Publication number: 20210104490
    Abstract: Embodiments include semiconductor packages and a method to form such semiconductor packages. A semiconductor package includes a plurality of dies on a substrate, and an encapsulation layer over the substrate. The encapsulation layer surrounds the dies. The semiconductor package also includes a plurality of dummy silicon regions on the substrate. The dummy silicon regions surround the dies and encapsulation layer. The plurality of dummy silicon regions are positioned on two or more edges of the substrate. The dummy silicon regions have a top surface substantially coplanar to a top surface of the dies. The dummy silicon regions include materials that include silicon, metals, or highly-thermal conductive materials. The materials have a thermal conductivity of approximately 120 W/mK or greater, or is equal to or greater than the thermal conductivity of silicon. An underfill layer surrounds the substrate and the dies, where the encapsulation layer surrounds portions of the underfill layer.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 8, 2021
    Inventors: Wei LI, Edvin CETEGEN, Nicholas S. HAEHN, Ram S. VISWANATH, Nicholas NEAL, Mitul MODI
  • Publication number: 20210066162
    Abstract: A device is disclosed. The device includes a substrate, a die on the substrate, a thermal interface material (TIM) on the die, and solder bumps on a periphery of a top surface of the substrate. An integrated heat spreader (IHS) is formed on the solder bumps. The IHS covers the TIM.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 4, 2021
    Inventors: Sergio A. CHAN ARGUEDAS, Nicholas S. HAEHN, Edvin CETEGEN, Nicholas NEAL, Jacob VEHONSKY, Steve S. CHO, Rahul JAIN, Antariksh Rao Pratap SINGH, Tarek A. IBRAHIM, Thomas HEATON, Vipul MEHTA
  • Publication number: 20210035921
    Abstract: Embodiments disclosed herein include electronic packages with thermal solutions. In an embodiment, an electronic package comprises a package substrate, a first die electrically coupled to the package substrate, and an integrated heat spreader (IHS) that is thermally coupled to a surface of the first die. In an embodiment, the IHS comprises a main body having an outer perimeter, and one or more legs attached to the outer perimeter of the main body, wherein the one or more legs are supported by the package substrate. In an embodiment, the electronic package further comprises a thermal block between the package substrate and the main body of the IHS, wherein the thermal block is within the outer perimeter of the main body.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 4, 2021
    Inventors: Nicholas NEAL, Nicholas S. HAEHN, Sergio CHAN ARGUEDAS, Edvin CETEGEN, Jacob VEHONSKY, Steve S. CHO, Rahul JAIN, Antariksh Rao Pratap SINGH, Tarek A. IBRAHIM, Thomas HEATON
  • Publication number: 20210020531
    Abstract: Embodiments disclosed herein include electronic packages with underfill flow control features. In an embodiment, an electronic package comprises a package substrate and a plurality of interconnects on the package substrate. In an embodiment, a die is coupled to the package substrate by the plurality of interconnects and a flow control feature is adjacent on the package substrate. In an embodiment, the flow control feature is electrically isolated from circuitry of the electronic package. In an embodiment, the electronic package further comprises an underfill surrounding the plurality of interconnects and in contact with the flow control feature.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 21, 2021
    Inventors: Edvin CETEGEN, Jacob VEHONSKY, Nicholas S. HAEHN, Thomas HEATON, Steve S. CHO, Rahul JAIN, Tarek IBRAHIM, Antariksh Rao Pratap SINGH, Nicholas NEAL, Sergio CHAN ARGUEDAS, Vipul MEHTA
  • Publication number: 20210020532
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such packages. In an embodiment an electronic package comprises a package substrate, and a first level interconnect (FLI) bump region on the package substrate. In an embodiment, the FLI bump region comprises a plurality of pads, and a plurality of bumps, where each bump is over a different one of the plurality of pads. In an embodiment, the electronic package further comprises a guard feature adjacent to the FLI bump region. In an embodiment, the guard feature comprises, a guard pad, and a guard bump over the guard pad, wherein the guard feature is electrically isolated from circuitry of the electronic package.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 21, 2021
    Inventors: Jacob VEHONSKY, Nicholas S. HAEHN, Thomas HEATON, Steve S. CHO, Rahul JAIN, Tarek IBRAHIM, Antariksh Rao Pratap SINGH, Edvin CETEGEN, Nicholas NEAL, Sergio CHAN ARGUEDAS