Patents by Inventor Nicholas Siler

Nicholas Siler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10359238
    Abstract: A side plate for use in a heat exchanger having a width dimension and a first and a second row of parallel arranged tubes extending in the direction of the width dimension. A first and a second header are arranged at one common end of the width dimension to receive the ends of the tubes in the first and second rows, respectively. The side plate includes a first body section joined to and extending from the first header, the first body section defining a first outer periphery. The side plate includes a second body section joined to and extending from the second header, the second body section defining a second outer periphery. The second outer periphery is spaced apart from the first outer periphery such that each one of the first and second body sections is allowed to more relative to the other in the direction of the width dimension.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: July 23, 2019
    Assignee: Modine Manufacturing Company
    Inventors: Mark Johnson, Bradley Engel, George Baker, Nicholas Siler, Brian Merklein
  • Publication number: 20160238325
    Abstract: A side plate for use in a heat exchanger having a width dimension and a first and a second row of parallel arranged tubes extending in the direction of the width dimension. A first and a second header are arranged at one common end of the width dimension to receive the ends of the tubes in the first and second rows, respectively. The side plate includes a first body section joined to and extending from the first header, the first body section defining a first outer periphery. The side plate includes a second body section joined to and extending from the second header, the second body section defining a second outer periphery. The second outer periphery is spaced apart from the first outer periphery such that each one of the first and second body sections is allowed to more relative to the other in the direction of the width dimension.
    Type: Application
    Filed: October 22, 2014
    Publication date: August 18, 2016
    Inventors: Mark Johnson, Bradley Engel, George Baker, Nicholas Siler, Brian Merklein
  • Patent number: 8263280
    Abstract: The invention provides a solid oxide fuel cell system including a fuel cell stack having an anode side and a cathode side, an anode tailgas oxidizer for oxidizing an anode exhaust flow from the anode side to produce an oxidized anode exhaust flow, and a heat exchanger. The heat exchanger includes a first inlet for receiving a cathode exhaust flow from the cathode side of the fuel cell stack, a second inlet for receiving the oxidized anode exhaust flow, and a mixing region for combining the cathode exhaust flow and the oxidized anode exhaust flow to produce a combined exhaust flow. An air flow path for supplying air to the fuel cell stack to support an energy-producing reaction in the fuel cell stack extends through the heat exchanger so that heat is transferred from the combined exhaust flow to the air traveling along the air flow path.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 11, 2012
    Assignee: Modine Manufacturing Company
    Inventors: Jeroen Valensa, Liping Cao, Mark G. Voss, Nicholas Siler
  • Publication number: 20120015258
    Abstract: The present invention provides, among other things, a method of operating a solid oxide fuel cell system including a fuel cell stack. The method can include the acts of combining an exhaust flow from an anode side of the fuel cell stack and an exhaust flow from a cathode side of the fuel cell stack, transferring heat from the combined exhaust flow to a first air flow, and combining a second air flow and the heated first air flow upstream from the fuel cell stack to control a temperature of the combined air flow entering the cathode side of the solid oxide fuel cell.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Applicant: MODINE MANUFACTURING COMPANY
    Inventors: Jeroen Valensa, Liping Cao, Mark G. Voss, Nicholas Siler
  • Patent number: 8048583
    Abstract: The present invention provides, among other things, a method of operating a solid oxide fuel cell system including a fuel cell stack. The method can include the acts of combining an exhaust flow from an anode side of the fuel cell stack and an exhaust flow from a cathode side of the fuel cell stack, transferring heat from the combined exhaust flow to a first air flow, and combining a second air flow and the heated first air flow upstream from the fuel cell stack to control a temperature of the combined air flow entering the cathode side of the solid oxide fuel cell.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: November 1, 2011
    Assignee: Modine Manufacturing Company
    Inventors: Jeroen Valensa, Liping Cao, Mark G. Voss, Nicholas Siler
  • Patent number: 7520907
    Abstract: An integrated steam reformer/combustor assembly (42) is provided for use in a fuel processor (20) that supplies a steam/fuel feed mix (34) to be reformed in the assembly and a combustor feed (40) to be combusted in the assembly (42). The assembly (42) includes a housing (44,58) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (46) located in the first passage to direct the feed mix therethrough, the first convoluted fin coated with a catalyst that induces a desired reaction in the feed mix; and a second convoluted fin (50) located in the second passage to direct the combustor feed therethrough, the second convoluted fin coated with a catalyst that induces a desired reaction in the combustor feed.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: April 21, 2009
    Assignee: Modine Manufacturing Company
    Inventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
  • Patent number: 7520908
    Abstract: A combustor preheater (94) is provided for use in a fuel processor (20) to preheat a combustor feed (40) by transferring heat from a post water-gas shift reformate flow (32) to the combustor feed (40). The combustor preheater (94) includes a housing (92) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (96) located in the first passage to direct the post water-gas shift reformate flow (32) therethrough and a second convoluted fin (98) located in the second passage to direct the combustor feed therethrough.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: April 21, 2009
    Assignee: Modine Manufacturing Company
    Inventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
  • Patent number: 7494518
    Abstract: A fuel processing system is provided wherein heat is transferred from a reformate flow (32) downstream from a water-gas shift (38) to both a) a combustor feed flow (40) that is supplied to a combustor (25); and b) a water flow (26) that is supplied to a reformer feed mix (34) for a steam reformer (28).
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: February 24, 2009
    Assignee: Modine Manufacturing Company
    Inventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
  • Patent number: 7494516
    Abstract: A recuperative heat exchanger (36) is provided for use in a fuel processor (20), the heat exchanger (36) transferring heat from a fluid flow (34) at one stage of a fuel processing operation to the fluid flow (32) at another stage of the fuel processing operation. The heat exchanger (36) includes a housing (56) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (70) located in the first passage to direct the fluid flow therethrough; and a second convoluted fin (72) located in the second passage to direct the fluid flow therethrough.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: February 24, 2009
    Assignee: Modine Manufacturing Company
    Inventors: Michael J. Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark G. Voss, Michael McGregor, Dennis C. Granetzke
  • Publication number: 20080020247
    Abstract: The present invention provides, among other things, a method of operating a solid oxide fuel cell system including a fuel cell stack. The method can include the acts of combining an exhaust flow from an anode side of the fuel cell stack and an exhaust flow from a cathode side of the fuel cell stack, transferring heat from the combined exhaust flow to a first air flow, and combining a second air flow and the heated first air flow upstream from the fuel cell stack to control a temperature of the combined air flow entering the cathode side of the solid oxide fuel cell.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 24, 2008
    Applicant: MODINE MANUFACTURING COMPANY
    Inventors: Jeroen Valensa, Liping Cao, Mark G. Voss, Nicholas Siler
  • Publication number: 20050241232
    Abstract: A combustor preheater (94) is provided for use in a fuel processor (20) to preheat a combustor feed (40) by transferring heat from a post water-gas shift reformate flow (32) to the combustor feed (40). The combustor preheater (94) includes a housing (92) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (96) located in the first passage to direct the post water-gas shift reformate flow (32) therethrough and a second convoluted fin (98) located in the second passage to direct the combustor feed therethrough.
    Type: Application
    Filed: February 16, 2005
    Publication date: November 3, 2005
    Inventors: Michael Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark Voss, Michael McGregor, Dennis Granetzke
  • Publication number: 20050217179
    Abstract: An integrated steam reformer/combustor assembly (42) is provided for use in a fuel processor (20) that supplies a steam/fuel feed mix (34) to be reformed in the assembly and a combustor feed (40) to be combusted in the assembly (42). The assembly (42) includes a housing (44,58) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (46) located in the first passage to direct the feed mix therethrough, the first convoluted fin coated with a catalyst that induces a desired reaction in the feed mix; and a second convoluted fin (50) located in the second passage to direct the combustor feed therethrough, the second convoluted fin coated with a catalyst that induces a desired reaction in the combustor feed.
    Type: Application
    Filed: February 16, 2005
    Publication date: October 6, 2005
    Inventors: Michael Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark Voss, Michael McGregor, Dennis Granetzke
  • Publication number: 20050217180
    Abstract: A recuperative heat exchanger (36) is provided for use in a fuel processor (20), the heat exchanger (36) transferring heat from a fluid flow (34) at one stage of a fuel processing operation to the fluid flow (32) at another stage of the fuel processing operation. The heat exchanger (36) includes a housing (56) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (70) located in the first passage to direct the fluid flow therethrough; and a second convoluted fin (72) located in the second passage to direct the fluid flow therethrough.
    Type: Application
    Filed: February 16, 2005
    Publication date: October 6, 2005
    Inventors: Michael Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark Voss, Michael McGregor, Dennis Granetzke
  • Publication number: 20050221137
    Abstract: A fuel humidifier/pre-heater system (10) is provided for pre-heating and humidifying a fuel flow, and is particularly useful for pre-heating and humidifying a fuel flow for a fuel cell, particularly molten-carbonate fuel cells (60). The system includes a steam generator (12), a water bypass (18), a liquid/steam mixer (20), and a mixture heater (14). The humidified fuel outlet temperature of the system is controlled by bypassing a portion of the water flow around the steam generator (12) so as to control the amount of superheat. The steam is then mixed with the fuel, and then the fuel/steam mixture is heated in the mixture heater (14). Additionally, a fuel bypass (16) can be provided for further temperature control by bypassing a portion of the fuel around the mixture heater (14) and then mixing the bypassed fuel with the steam/fuel mixture that has passed through the mixture heater (14).
    Type: Application
    Filed: March 14, 2005
    Publication date: October 6, 2005
    Inventors: Todd Bandhauer, Mark Voss, Nicholas Siler, Michael McGregor, Michael Reinke
  • Publication number: 20050178063
    Abstract: A fuel processing system is provided wherein heat is transferred from a reformate flow (32) downstream from a water-gas shift (38) to both a) a combustor feed flow (40) that is supplied to a combustor (25); and b) a water flow (26) that is supplied to a reformer feed mix (34) for a steam reformer (28).
    Type: Application
    Filed: February 16, 2005
    Publication date: August 18, 2005
    Inventors: Michael Reinke, Jeroen Valensa, Todd Bandhauer, Nicholas Siler, Mark Voss, Michael McGregor, Dennis Granetzke
  • Patent number: 6832647
    Abstract: An integrated condenser/separator (10) is provided for condensing and separating a condensate (11) from a cathode exhaust gas flow (12) in a fuel cell system (14). The condenser/separator includes a housing (16) and one or more baffle plates (18, 20) positioned in the housing (16) to divide the interior of the housing (16) into two or more gas flow chambers (24, 26, 28) each containing a stack (32, 34, 36) of heat exchange units (30). A condensate drain (106, 108) is provided in each of the gas flow chambers (24, 26) to drain condensate therefrom. The condenser/separator (10) can be configured into any reasonable and independent number of coolant and gas side passes as maybe required to meet the thermodynamic and pressure drop requirements of each particular application.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 21, 2004
    Assignee: Modine Manufacturing Company
    Inventors: Mark G. Voss, Nicholas Siler, Gregory A. Mross, Joseph R. Stevenson, Alan P. Meissner
  • Publication number: 20030183374
    Abstract: An integrated condenser/separator (10) is provided for condensing and separating a condensate (11) from a cathode exhaust gas flow (12) in a fuel cell system (14). The condenser/separator includes a housing (16) and one or more baffle plates (18, 20) positioned in the housing (16) to divide the interior of the housing (16) into two or more gas flow chambers (24, 26, 28) each containing a stack (32, 34, 36) of heat exchange units (30). A condensate drain (106, 108) is provided in each of the gas flow chambers (24, 26) to drain condensate therefrom. The condenser/separator (10) can be configured into any reasonable and independent number of coolant and gas side passes as maybe required to meet the thermodynamic and pressure drop requirements of each particular application.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Inventors: Mark G. Voss, Nicholas Siler, Gregory A. Mross, Joseph R. Stevenson, Alan P. Meissner