Patents by Inventor Nicholas Tribble

Nicholas Tribble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240010702
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: August 1, 2023
    Publication date: January 11, 2024
    Inventors: Nicholas Tribble, Eleanor Bagg, William Lawrance
  • Patent number: 11753456
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: September 12, 2023
    Assignee: Adaptimmune Limited
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Patent number: 11725040
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: August 15, 2023
    Assignee: Adaptimmune Limited
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Patent number: 11572400
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: February 7, 2023
    Assignee: Adaptimmune Limited
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20230028573
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: August 17, 2022
    Publication date: January 26, 2023
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20220127327
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: January 12, 2022
    Publication date: April 28, 2022
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Patent number: 11286289
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: March 29, 2022
    Assignee: ADAPTIMMUNE LIMITED
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20220031753
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20220025013
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: October 14, 2021
    Publication date: January 27, 2022
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20190144521
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: October 8, 2018
    Publication date: May 16, 2019
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20190135892
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGEEHSV (SEQ ID NO: 1) derived from the MAGE-B2 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: October 8, 2018
    Publication date: May 9, 2019
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg
  • Publication number: 20190127436
    Abstract: The present invention relates to T cell receptors (TCRs) which bind the HLA-A*0201 restricted peptide GVYDGREHTV (SEQ ID NO: 1) derived from the MAGE-A4 protein. The TCRs of the invention demonstrate excellent specificity profiles for this MAGE epitope. Also provided are nucleic acids encoding the TCRs, cells engineered to present the TCRs, cells harbouring expression vectors encoding the TCRs and pharmaceutical compositions comprising the TCRs, nucleic acids or cells of the invention.
    Type: Application
    Filed: October 8, 2018
    Publication date: May 2, 2019
    Inventors: Nicholas Tribble, William Lawrance, Eleanor Bagg