Patents by Inventor Nicholas W. Lum

Nicholas W. Lum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130059546
    Abstract: Electronic devices with wireless communications capabilities are provided. The electronic device may include storage and processing circuitry, power amplifier circuitry, power supply circuitry, etc. The storage and processing circuitry may direct the power amplifier circuitry to operate using a desired power mode, in allocated resource blocks within a particular frequency channel, and at a given output power level. The power supply circuitry may bias the power amplifier circuitry with a power supply voltage. The electronic device may be subject to in-band emissions requirements and adjacent channel leakage requirements that restrict the power levels produced by the device on frequencies that are not allocated to the device. The electronic device may optimize the power amplifier supply voltage based on allocated resource blocks by minimizing the supply voltage to reduce power consumption while ensuring that emissions requirements are satisfied.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Inventors: Nicholas W. Lum, William J. Noellert, Ronald W. Dimpflmaier
  • Publication number: 20130045744
    Abstract: An electronic device has wireless communications circuitry that supports communications using multiple radio access technologies. The electronic device may gather information such as data rate values, power consumption values, and other data for a currently active radio access technology and an alternative radio access technology. The electronic device may automatically switch between the currently active radio access technology and the alternative radio access technology based on a value of a data rate efficiency metric. The data rate efficiency metric may represent how efficiently each radio access technology is capable of using power to convey a given amount of data per unit time. The data rate efficiency metric may be evaluated using measured power consumption data, measured data rate values, and operating parameters such as signal strength and transmitted power parameters.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Inventors: Ronald W. Dimpflmaier, Jesse Yu, Nicholas W. Lum
  • Publication number: 20130045700
    Abstract: A wireless electronic device may contain multiple antennas. Control circuitry in the wireless electronic device may adjust antenna switching circuitry so that the device repeatedly cycles through use of each of the antennas. In a device with first and second antennas, the device may repeatedly toggle between the first and second antennas. During each toggling cycle time period, the first antenna may transmit for a fraction of the time period and the second antenna may transmit for a fraction of the time period. The wireless device may control the average power emitted by each antenna by adjusting the fractions of time assigned to each antenna. By performing antenna toggling, the average transmit power produced by each antenna may be reduced while maintaining the average transmit power produced by the device at a desired level.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 21, 2013
    Inventors: Michael J. Stallman, Nicholas W. Lum
  • Publication number: 20130016633
    Abstract: An electronic device has wireless communications circuitry that includes transmitters and receivers. Antenna structures may be coupled to the transmitters and receivers to support radio-frequency signal transmission and radio-frequency signal reception operations. Switching circuitry such may be used to support multiple communications bands of interest. One or more low band receivers may be associated with the first switch and one or more high band receivers may be associated with the second switch. The switches can be configured in real time to switch a desired communications band into use. A diplexer may be used to simultaneously pass low bands to the first receiver and high bands to the second receiver. In this way, a data stream in the low band may be simultaneously received with a data stream in the high band.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Nicholas W. Lum, Ronald W. Dimpflmaier, Louie J. Sanguinetti
  • Patent number: 8219157
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may have antenna diversity circuitry that allows an optimum antenna in an antenna structure to be switched into use during device operations. The antenna structure may be shared between multiple radio-frequency transceivers in a radio-frequency transceiver circuit. The radio-frequency transceiver circuit may be coupled to the antenna structure using switching and filtering circuitry. The filtering circuitry may include a diplexer that divides radio-frequency signals into a divided signal path based on frequency. The filtering circuitry may also include bandpass filters that are interposed in each branch of the divided signal path. Switching circuitry in the switching and filtering circuitry may be used to selectively configure the wireless communications circuitry in transmit and receive modes using multiple communications bands.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: July 10, 2012
    Assignee: Apple Inc.
    Inventors: Nicholas W. Lum, Louie J. Sanguinetti
  • Patent number: 8208867
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may have antenna diversity circuitry that allows an optimum antenna or optimum antennas in an antenna structure to be switched into use during device operations. The antenna structure may be shared between multiple radio-frequency transceivers in a radio-frequency transceiver circuit. The radio-frequency transceiver circuit may be coupled to the antenna structure using switching and filtering circuitry. The filtering circuitry may include one or more diplexers that divide radio-frequency signals into divided signal paths based on frequency. The filtering circuitry may also include low pass, high pass, and bandpass filters that are interposed in the divided signal paths. Switching circuitry in the switching and filtering circuitry may be used to selectively configure the wireless communications circuitry in transmit and receive modes using multiple communications bands.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: June 26, 2012
    Assignee: Apple Inc.
    Inventors: Nicholas W. Lum, Louie J. Sanguinetti
  • Publication number: 20120009887
    Abstract: An electronic device has wireless communications circuitry that includes transmitters and receivers. Antenna structures may be coupled to the transmitters and receivers to support radio-frequency signal transmission and radio-frequency signal reception operations. Switching circuitry such as first and second radio-frequency switches may be used to support multiple communications bands of interest. A low band set of transmitters may be associated with the first switch and a high band set of transmitters may be associated with the second switch. The switches can be configured in real time to switch a desired communications band into use. As transmitted signals at frequency f pass through the switches, harmonics at 2f, 3f, and other integral multiples of the transmitted signals may be produced. A diplexer may be interposed between the switching circuitry and the antenna structures that prevents the harmonics from reaching the antenna structures.
    Type: Application
    Filed: April 21, 2011
    Publication date: January 12, 2012
    Inventors: Louie J. Sanguinetti, Ronald W. Dimpflmaier, Nicholas W. Lum
  • Publication number: 20110319035
    Abstract: An electronic device has wireless communications circuitry including a triplexer. The wireless communications circuitry may be used in first and second modes. In the first mode, the device communicates in a first communications band using a transmitter in a first uplink frequency range associated with the first communications band and using a receiver in a first downlink frequency range associated with the first communications band. In the second mode, the device communicates in a second communications band using a transmitter to transmit in a second uplink frequency range associated with the second communications band and using the receiver to receive in a second downlink frequency range associated with the second communications band. Signals in the two downlink frequency ranges may pass through a common bandpass filter in the triplexer. Two additional bandpass filters in the triplexer may be used to respectively handle the two uplink frequency ranges.
    Type: Application
    Filed: April 5, 2011
    Publication date: December 29, 2011
    Inventors: Nicholas W. Lum, Ronald W. Dimpflmaier, Louie J. Sanguinetti
  • Publication number: 20110136493
    Abstract: Portable user devices are provided that communicate wirelessly with base stations. A user device may include a transceiver, a power amplifier, a voltage supply, and a global positioning system (GPS) unit. The device may transmit signals at a certain transmit power to a neighboring base station. The device may log the time spent transmitting at each power level. Each data point may be tagged with the current location of the device. The logs of each device may be aggregated by a power optimization server. The power optimization server may calculate optimum power settings for each region and for each type of device. A region may be any desirable size ranging from the size of a single cell to an entire continent. Device users may download updated optimum settings. A device may automatically detect and select the optimum transmit power setting during operation depending on its current location.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Ronald William Dimpflmaier, William Jean Noellert, Jesse Yu, Nicholas W. Lum
  • Publication number: 20100260082
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may have antenna diversity circuitry that allows an optimum antenna or optimum antennas in an antenna structure to be switched into use during device operations. The antenna structure may be shared between multiple radio-frequency transceivers in a radio-frequency transceiver circuit. The radio-frequency transceiver circuit may be coupled to the antenna structure using switching and filtering circuitry. The filtering circuitry may include one or more diplexers that divide radio-frequency signals into divided signal paths based on frequency. The filtering circuitry may also include low pass, high pass, and bandpass filters that are interposed in the divided signal paths. Switching circuitry in the switching and filtering circuitry may be used to selectively configure the wireless communications circuitry in transmit and receive modes using multiple communications bands.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 14, 2010
    Inventors: Nicholas W. Lum, Louie J. Sanguinetti
  • Publication number: 20100248799
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may have antenna diversity circuitry that allows an optimum antenna in an antenna structure to be switched into use during device operations. The antenna structure may be shared between multiple radio-frequency transceivers in a radio-frequency transceiver circuit. The radio-frequency transceiver circuit may be coupled to the antenna structure using switching and filtering circuitry. The filtering circuitry may include a diplexer that divides radio-frequency signals into a divided signal path based on frequency. The filtering circuitry may also include bandpass filters that are interposed in each branch of the divided signal path. Switching circuitry in the switching and filtering circuitry may be used to selectively configure the wireless communications circuitry in transmit and receive modes using multiple communications bands.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Inventors: Nicholas W. Lum, Louie J. Sanguinetti