Patents by Inventor Nicholaus W. Smith

Nicholaus W. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719525
    Abstract: Methods and systems for determining a position of a structure using inductive position sensing are described. In an example, a processor may receive a plurality of data points representing a plurality of voltages. The plurality of voltages may be generated by a plurality of sensor coils based on a magnetic flux field. The magnetic flux field may be generated by a plurality of driver coils, and the plurality of voltages may vary with changes in the magnetic flux field. The processor may calibrate the plurality of data points to generate a plurality of calibrated data points. The processor may filter the plurality of calibrated data points. The processor may estimate a position of the structure based on the filtered calibrated data points, where the position of the structure may indicate a size of a size changing device.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: August 8, 2023
    Assignee: Renesas Electronics America Inc.
    Inventors: Damla S. Acar, Pooja Agrawal, Ashley M. De Wolfe, Gustavo James Mehas, Nicholaus W. Smith
  • Publication number: 20230120972
    Abstract: Methods and systems for determining a position of a structure using inductive position sensing are described. In an example, a processor may receive a plurality of data points representing a plurality of voltages. The plurality of voltages may be generated by a plurality of sensor coils based on a magnetic flux field. The magnetic flux field may be generated by a plurality of driver coils, and the plurality of voltages may vary with changes in the magnetic flux field. The processor may calibrate the plurality of data points to generate a plurality of calibrated data points. The processor may filter the plurality of calibrated data points. The processor may estimate a position of the structure based on the filtered calibrated data points, where the position of the structure may indicate a size of a size changing device.
    Type: Application
    Filed: October 20, 2021
    Publication date: April 20, 2023
    Applicant: Renesas Electronics America Inc.
    Inventors: Damla S. Acar, Pooja Agrawal, Ashley M. De Wolfe, Gustavo James Mehas, Nicholaus W. Smith
  • Patent number: 10132650
    Abstract: A wireless power transmitter may include a transmit coil configured to generate a wireless power signal for wireless power transfer, at least one secondary sensing coil configured to generate a signal responsive to a magnetic flux field generated during the wireless power transfer, and control logic configured to detect at least one condition of a wireless power transfer system responsive to detecting distortion in the magnetic flux field from the at least one signal received from the secondary sensing coil. A related method may include generating with a wireless power transmitter a wireless power signal, generating with a plurality of secondary sensing coils one or more signals responsive to a magnetic flux field generated during the wireless power transfer, and detecting at least one condition of a wireless power transfer system responsive to the one or more signals generated by the plurality of secondary sensing coils.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: November 20, 2018
    Assignee: Integrated Device Technology, Inc.
    Inventors: Gustavo J. Mehas, David F. Wilson, Nicholaus W. Smith
  • Patent number: 9898060
    Abstract: A system and method of wireless power transfer using automatic power supply selection includes an electronic system. The electronic system includes an electronics module, a primary power supply that receives power from a primary external power source, a secondary power supply that receives power from a secondary external power source, and a selection module. When the primary power supply is operative, the selection module selects the primary power supply to supply power to the electronics module and disables the secondary power supply. When the primary power supply is not operative and the secondary power supply is operative, the selection module selects the secondary power supply to supply power to the electronics module. When the secondary power supply is disabled, the secondary power supply disables the secondary external power source.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: February 20, 2018
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventor: Nicholaus W. Smith
  • Patent number: 9837864
    Abstract: A wireless power transmitter may include a bridge inverter and a plurality of parallel paths operably coupled to the bridge inverter. Each path includes a resonance tank including a transmit coil coupled with at least one resonance capacitor, a first switch serially coupled with the resonance tank and switching node A of the bridge inverter, a first clamping element in parallel with the first switch, a second switch serially coupled with the resonance tank and switching node B of the bridge inverter, and a second clamping element in parallel with the second switch. A method includes generating a wireless power signal through a used coil in a first parallel path, and clamping a parasitic voltage generated in at least one unused coil in at least one additional parallel path through a clamp element across a switch in the at least one parallel path for the at least one unused coil.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 5, 2017
    Assignee: Integrated Device Technology, Inc.
    Inventors: Gustavo J. Mehas, Nicholaus W. Smith, Adam M. Bumgarner
  • Publication number: 20160285278
    Abstract: A wireless power transmitter may include a bridge inverter and a plurality of parallel paths operably coupled to the bridge inverter. Each path includes a resonance tank including a transmit coil coupled with at least one resonance capacitor, a first switch serially coupled with the resonance tank and switching node A of the bridge inverter, a first clamping element in parallel with the first switch, a second switch serially coupled with the resonance tank and switching node B of the bridge inverter, and a second clamping element in parallel with the second switch. A method includes generating a wireless power signal through a used coil in a first parallel path, and clamping a parasitic voltage generated in at least one unused coil in at least one additional parallel path through a clamp element across a switch in the at least one parallel path for the at least one unused coil.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Inventors: Gustavo J. Mehas, Nicholaus W. Smith, Adam M. Bumgarner
  • Publication number: 20160218559
    Abstract: A wireless power transmitter may include a transmit coil configured to generate a wireless power signal for wireless power transfer, at least one secondary sensing coil configured to generate a signal responsive to a magnetic flux field generated during the wireless power transfer, and control logic configured to detect at least one condition of a wireless power transfer system responsive to detecting distortion in the magnetic flux field from the at least one signal received from the secondary sensing coil. A related method may include generating with a wireless power transmitter a wireless power signal, generating with a plurality of secondary sensing coils one or more signals responsive to a magnetic flux field generated during the wireless power transfer, and detecting at least one condition of a wireless power transfer system responsive to the one or more signals generated by the plurality of secondary sensing coils.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 28, 2016
    Inventors: Gustavo J. Mehas, David F. Wilson, Nicholaus W. Smith
  • Publication number: 20160077562
    Abstract: A system and method of wireless power transfer using automatic power supply selection includes an electronic system. The electronic system includes an electronics module, a primary power supply that receives power from a primary external power source, a secondary power supply that receives power from a secondary external power source, and a selection module. When the primary power supply is operative, the selection module selects the primary power supply to supply power to the electronics module and disables the secondary power supply. When the primary power supply is not operative and the secondary power supply is operative, the selection module selects the secondary power supply to supply power to the electronics module. When the secondary power supply is disabled, the secondary power supply disables the secondary external power source.
    Type: Application
    Filed: June 26, 2015
    Publication date: March 17, 2016
    Inventor: Nicholaus W. Smith