Patents by Inventor Nicholaus Wayne SMITH

Nicholaus Wayne SMITH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11527920
    Abstract: Embodiments described herein provide foreign object detection based on coil current sensing. The transmitter power loss is computed directly based on the coil current, in conjunction with, or in place of the conventional computation based on transmitter input current. The enhanced precision of the computer power loss can be used to more accurately detect a foreign object near the transmitter coil during a wireless power transfer.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: December 13, 2022
    Assignee: Integrated Device Technology, Inc.
    Inventors: Gustavo James Mehas, Amit D. Bavisi, Nicholaus Wayne Smith
  • Patent number: 11418067
    Abstract: Embodiments described herein provide foreign object detection based on coil current sensing. The transmitter power loss is computed directly based on the coil current, in conjunction with, or in place of the conventional computation based on transmitter input current. The enhanced precision of the computer power loss can be used to more accurately detect a foreign object near the transmitter coil during a wireless power transfer.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: August 16, 2022
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventors: Gustavo James Mehas, Amit D. Bavisi, Nicholaus Wayne Smith
  • Publication number: 20220205816
    Abstract: A method and a system may inductively determine a position of a display screen of a computing device. Associated processes may generate a magnetic field by providing an alternating current to a driver coil, and may generate a voltage at a sensor coil in response to the magnetic field. The system and method may additionally include determining a position of the display screen by executing an algorithm at a processor. An input to the algorithm may include voltage data associated with the voltage generated at the sensor coil.
    Type: Application
    Filed: May 13, 2021
    Publication date: June 30, 2022
    Applicant: Renesas Electronics America Inc.
    Inventors: Gustavo James MEHAS, Damla ACAR, Ashley DE WOLFE, Pooja AGRAWAL, Nicholaus Wayne SMITH
  • Patent number: 11374441
    Abstract: In accordance with some embodiments of the present invention, a method of controlling and correcting negative modulation is presented. In some embodiments, a method of operating a receiver includes detecting a negative modulation and adjusting one or more parameters to force a transition to a positive modulation. The parameters can be the output voltage Vout, the transmitter input voltage Vin, or receiver structural elements.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: June 28, 2022
    Assignee: Integrated Device Technology, Inc.
    Inventors: Nicholaus Wayne Smith, Chan Young Jeong
  • Patent number: 11336119
    Abstract: In accordance with embodiments of the present invention, a wireless power transmitter includes a transmit coil that includes a plurality of concentric coils; a switch circuit coupled to the plurality of concentric coils; a driver coupled to provide a voltage to the switch circuit; and a controller coupled to the switch circuit, the controller providing control signals to the switch circuit selecting to provide the voltage across one or more of the plurality of concentric coils depending on a Q-factor measuring in the presence of a receive coil. A method of operating a wireless power transmitter includes determining a measured Q-factor for each of a plurality of configurations of concentric transmit coils; determining a difference between each of the measured Q-factors and a standard Q-factor; and selecting one of the plurality of configurations based on the differences.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: May 17, 2022
    Assignee: Integrated Device Technology, Inc.
    Inventor: Nicholaus Wayne Smith
  • Patent number: 11240942
    Abstract: In accordance with some embodiments of the present invention, an ion cooling engine (ICE) controlled by a transmitting or receiving device cools a transmit or receive coil and possibly other parts of a wireless power transmitter or receiver system. In some embodiments, the ICE includes a low-voltage circuit controlled by the transmitting device and coupled to a high voltage circuit that generates the airflow. Other features are also provided.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 1, 2022
    Assignee: Integrated Device Technology, Inc.
    Inventors: Nicholaus Wayne Smith, Tao Qi, Amit D. Bavisi, Changjae Kim
  • Patent number: 10840741
    Abstract: A wireless power circuit is presented that includes a transmit coil coupled to a first node; a receive coil coupled to the first node; a switch circuit coupled to the transmit coil and the receive coil opposite the first node, the switch switching the transmit coil to a second node in a transmit mode and switching the receive coil to the second node in a receive mode; a controller coupled to the first node and the second node, the controller coupled to provide signals to the switch circuit; and a self-start circuit coupled to the receive coil (or Tx coil) that automatically selects one of the coils to be used, the self-start circuit providing power to the switch circuit to hold the switch circuit in the receive mode (or predefined coil to be selected by default).
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 17, 2020
    Assignee: Integrated Device Technology, Inc.
    Inventors: Nicholaus Wayne Smith, Tao Qi, Jiangjian Huang, Chan Young Jeong, Gustavo James Mehas
  • Patent number: 10784044
    Abstract: In accordance with embodiments of the present invention, a coil design for the transmission of wireless power. In some embodiments, the coil can include a winding with one or more turns of conductive traces mounted on a substrate, wherein the one or more turns include characteristics that enhance operation of the coil. In some embodiments, the winding includes a transmit coil and a receive coil, each coupled to terminals that provide for a transmit functionality and a receive functionality. In some embodiments, the traces are varied in width and/or thickness in order to optimize the inductance and the coil resistance. In some embodiments, parameters of a control circuit coupled to the coil to affect a transmit functionality or a receive functionality can be optimized.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 22, 2020
    Assignee: Integrated Device Technology, Inc.
    Inventors: Tao Qi, Gustavo Mehas, Chan Young Jeong, Xinyun Gu, Nicholaus Wayne Smith, Amit D. Bavisi, Daryl Jay Sugasawara, Aihua Lee, Tianze Kan
  • Publication number: 20200274396
    Abstract: In accordance with embodiments of the present invention, a wireless power transmitter includes a transmit coil that includes a plurality of concentric coils; a switch circuit coupled to the plurality of concentric coils; a driver coupled to provide a voltage to the switch circuit; and a controller coupled to the switch circuit, the controller providing control signals to the switch circuit selecting to provide the voltage across one or more of the plurality of concentric coils depending on a Q-factor measuring in the presence of a receive coil. A method of operating a wireless power transmitter includes determining a measured Q-factor for each of a plurality of configurations of concentric transmit coils; determining a difference between each of the measured Q-factors and a standard Q-factor; and selecting one of the plurality of configurations based on the differences.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 27, 2020
    Inventor: Nicholaus Wayne SMITH
  • Publication number: 20200169124
    Abstract: Embodiments described herein provide foreign object detection based on coil current sensing. The transmitter power loss is computed directly based on the coil current, in conjunction with, or in place of the conventional computation based on transmitter input current. The enhanced precision of the computer power loss can be used to more accurately detect a foreign object near the transmitter coil during a wireless power transfer.
    Type: Application
    Filed: September 27, 2019
    Publication date: May 28, 2020
    Inventors: Gustavo James MEHAS, Amit D. BAVISI, Nicholaus Wayne SMITH
  • Publication number: 20200169123
    Abstract: Embodiments described herein provide foreign object detection based on coil current sensing. The transmitter power loss is computed directly based on the coil current, in conjunction with, or in place of the conventional computation based on transmitter input current. The enhanced precision of the computer power loss can be used to more accurately detect a foreign object near the transmitter coil during a wireless power transfer.
    Type: Application
    Filed: May 3, 2019
    Publication date: May 28, 2020
    Inventors: Gustavo James Mehas, Amit D. Bavisi, Nicholaus Wayne Smith
  • Publication number: 20190394906
    Abstract: In accordance with some embodiments of the present invention, an ion cooling engine (ICE) controlled by a transmitting or receiving device cools a transmit or receive coil and possibly other parts of a wireless power transmitter or receiver system. In some embodiments, the ICE includes a low-voltage circuit controlled by the transmitting device and coupled to a high voltage circuit that generates the airflow. Other features are also provided.
    Type: Application
    Filed: April 16, 2019
    Publication date: December 26, 2019
    Inventors: Nicholaus Wayne SMITH, Tao QI, Amit D. BAVISI, Changjae KIM
  • Publication number: 20190386525
    Abstract: In accordance with some embodiments of the present invention, a method of controlling and correcting negative modulation is presented. In some embodiments, a method of operating a receiver includes detecting a negative modulation and adjusting one or more parameters to force a transition to a positive modulation. The parameters can be the output voltage Vout, the transmitter input voltage Vin, or receiver structural elements.
    Type: Application
    Filed: March 28, 2019
    Publication date: December 19, 2019
    Inventors: Nicholaus Wayne SMITH, Chan Young JEONG
  • Publication number: 20190356167
    Abstract: A wireless power circuit is presented that includes a transmit coil coupled to a first node; a receive coil coupled to the first node; a switch circuit coupled to the transmit coil and the receive coil opposite the first node, the switch switching the transmit coil to a second node in a transmit mode and switching the receive coil to the second node in a receive mode; a controller coupled to the first node and the second node, the controller coupled to provide signals to the switch circuit; and a self-start circuit coupled to the receive coil (or Tx coil) that automatically selects one of the coils to be used, the self-start circuit providing power to the switch circuit to hold the switch circuit in the receive mode (or predefined coil to be selected by default).
    Type: Application
    Filed: March 29, 2019
    Publication date: November 21, 2019
    Inventors: Nicholaus Wayne SMITH, Tao QI, Jiangjian HUANG, Chan Young JEONG, Gustavo James MEHAS
  • Publication number: 20190334391
    Abstract: In accordance with embodiments of the present invention, a coil design for the transmission of wireless power. In some embodiments, the coil can include a winding with one or more turns of conductive traces mounted on a substrate, wherein the one or more turns include characteristics that enhance operation of the coil. In some embodiments, the winding includes a transmit coil and a receive coil, each coupled to terminals that provide for a transmit functionality and a receive functionality. In some embodiments, the traces are varied in width and/or thickness in order to optimize the inductance and the coil resistance. In some embodiments, parameters of a control circuit coupled to the coil to affect a transmit functionality or a receive functionality can be optimized.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 31, 2019
    Inventors: Tao QI, Gustavo MEHAS, Chan Young JEONG, Xinyun GU, Nicholaus Wayne SMITH, Amit D. BAVISI, Daryl Jay SUGASAWARA, Aihua LEE, Tianze KAN
  • Publication number: 20180337559
    Abstract: In accordance with some embodiments of the present invention, a method of reducing transmitted power in a wireless power transmitter is presented. In some embodiments, the method and circuits reduce a resonance power level in a tank circuit coupled to a transmitter in the wireless power transmitter while not increasing an operating frequency above a frequency limit.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 22, 2018
    Inventors: Nicholaus Wayne SMITH, Feng ZHOU, Thomas Joseph DeLURIO