Patents by Inventor Nickolas Papadopoulos

Nickolas Papadopoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240309449
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Application
    Filed: June 10, 2024
    Publication date: September 19, 2024
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Publication number: 20240294648
    Abstract: This document provides methods and materials for assessing a mammal having or suspected of having cancer and/or for treating a mammal having cancer. For example, molecules including one or more antigen-binding domains (e.g., a single-chain variable fragment (scFv)) that can bind to a modified peptide (e.g., a tumor antigen), as well as method for using such molecules, are provided.
    Type: Application
    Filed: September 25, 2023
    Publication date: September 5, 2024
    Inventors: Emily Han-Chung Hsiue, Qing Wang, Bert Vogelstein, Kenneth W. Kinzler, Shibin Zhou, Jacqueline Douglass, Michael S. Hwang, Nickolas Papadopoulos
  • Publication number: 20240263231
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Application
    Filed: March 22, 2024
    Publication date: August 8, 2024
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Patent number: 12054781
    Abstract: As cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we assessed the cerebrospinal fluid (CSF) that bathes the CNS for tumor DNA, here termed CSF-tDNA. The results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 6, 2024
    Assignee: The Johns Hopkins University
    Inventors: Chetan Bettegowda, Kenneth W. Kinzler, Bert Vogelstein, Yuxuan Wang, Luis Diaz, Nickolas Papadopoulos
  • Patent number: 12006544
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Grant
    Filed: November 27, 2023
    Date of Patent: June 11, 2024
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Publication number: 20240165155
    Abstract: This document relates to methods and materials for treating a mammal having cancer. For example, this document provides T cell receptors (TCRs) that can bind to a modified peptide (e.g., a tumor antigen). In some cases, methods of using T cells expressing one or more TCRs that can bind to a modified peptide (e.g., a tumor antigen) to treat a mammal having cancer are provided.
    Type: Application
    Filed: March 31, 2022
    Publication date: May 23, 2024
    Inventors: Kellie N. Smith, Justina Caushi, Emily Han-Chung Hsiue, Andrew M. Pardoll, Shibin Zhou, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos
  • Publication number: 20240166751
    Abstract: Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We generated single chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by human leukocyte antigen (HLA) molecules. These scFvs can be converted to full-length antibodies, termed MANAbodies, targeting “Mutation Associated Neo-Antigens” bound to HLA. A phage display library representing a highly diverse array of single-chain variable fragment sequences was first designed and constructed. A competitive selection protocol was then used to identify clones specific for peptides bound to pre-defined HLA types. In this way, we obtained scFvs, including one specific for a peptide encoded by a common KRAS mutant and another by a common EGFR mutant. Molecules targeting MANA can be developed that specifically react with mutant peptide-HLA complexes even when these peptides differ by only one amino acid from the normal, wild-type form.
    Type: Application
    Filed: July 12, 2023
    Publication date: May 23, 2024
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Shibin Zhou, Luis Diaz, Nickolas Papadopoulos, Andrew Skora, Jacqueline Douglass, Michael S. Hwang
  • Publication number: 20240148870
    Abstract: Provided herein are immune cells and methods of use, wherein the immune cells include a chimeric antigen receptor (CAR), wherein the CAR comprises an extracellular antigen binding domain that binds specifically to a first epitope; and an inhibitory chimeric antigen receptor (iCAR), wherein the iCAR comprises an extracellular antigen binding domain that binds specifically to a second epitope, wherein the immune cell is activated when the immune cells binds to the first epitope and does not bind to the second epitope; and wherein the immune cell is inactivated when the immune cell binds to the first and second epitopes.
    Type: Application
    Filed: March 11, 2022
    Publication date: May 9, 2024
    Inventors: Michael S. Hwang, Jacqueline Douglass, Emily Han-Chung Hsiue, Kenneth W. Kinzler, Brian J. Mog, Nickolas Papadopoulos, Alexander H. Pearlman, Bert Vogelstein, Shibin Zhou
  • Publication number: 20240124608
    Abstract: This document relates to methods and materials for treating T cell cancers. For example, a composition containing one or more bispecific molecules targeting T cell receptor £ chain constant region (TRBC) can be administered to a mammal having a T cell cancer to treat the mammal. For example, this document provides methods and materials for using one or more bispecific molecules to treat a mammal having a T cell cancer.
    Type: Application
    Filed: February 15, 2022
    Publication date: April 18, 2024
    Inventors: Michael S. Hwang, Kenneth W. Kinzler, Brian J. Mog, Nickolas Papadopoulos, Andrew M. Pardoll, Suman Paul, Bert Vogelstein, Shibin Zhou
  • Publication number: 20240102092
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 28, 2024
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Publication number: 20240084381
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Publication number: 20240068033
    Abstract: A method of detecting Barrett's esophagus with low grade dysplasia, or Barrett's esophagus with high grade dysplasia, or adenocarcinoma of the esophagus, applying a Repetitive Element Aneuploidy Sequencing System (RealSeqS) methodology to a biological sample from the esophagus of the subject to detect Barrett's esophagus with low grade dysplasia, or Barrett's esophagus with high grade dysplasia, or adenocarcinoma of the esophagus.
    Type: Application
    Filed: January 14, 2022
    Publication date: February 29, 2024
    Inventors: Sanford Markowitz, Amitabh Chak, Helen Moinova, Joseph Willis, Bert Vogelstein, Kenneth Kinzler, Nickolas Papadopoulos, Chetan Bettewgowda, Christopher Douville
  • Publication number: 20240045844
    Abstract: A method for classifying data using non-negative matrix factorization can include receiving a population of sample data, generating a first matrix of the amplicon counts per sample data, dividing the first matrix into a product of a second matrix and a third matrix, in the second matrix, determining whether each signature is a long or short fragment per each amplicon count, in the third matrix, determining intensities of each signature per the sample data, and classifying the sample data based on the intensities of each signature. The population can include amplicon counts per sample data. The second matrix can include signatures of short and long DNA fragments and the third matrix can include intensities of each signature of the short and long DNA fragments.
    Type: Application
    Filed: October 1, 2021
    Publication date: February 8, 2024
    Inventors: Christopher Douville, Haley Grant, Albert Kuo, Kamel Lahouel, Kenneth W. Kinzler, Nickolas Papadopoulos, Cristian Tomasetti, Bert Vogelstein
  • Publication number: 20240002541
    Abstract: This document relates to methods and materials for treating T cell cancers. For example, a composition containing one or more bispecific molecules can be administered to a mammal having a T cell cancer to treat the mammal. For example, methods and materials for using one or more bispecific molecules to treat a mammal having a T cell cancer are provided.
    Type: Application
    Filed: December 1, 2021
    Publication date: January 4, 2024
    Inventors: Sarah DiNapoli, Jacqueline Douglass, Emily Han-Chung Hsiue, Michael S. Hwang, Kenneth W. Kinzler, Maximilian Konig, Brian J. Mog, Nickolas Papadopoulos, Andrew M. Pardoll, Suman Paul, Alexander H. Pearlman, Bert Vogelstein, Shibin Zhou
  • Publication number: 20230365677
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 16, 2023
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11807662
    Abstract: This document provides methods and materials for assessing a mammal having or suspected of having cancer and/or for treating a mammal having cancer. For example, molecules including one or more antigen-binding domains (e.g., a single-chain variable fragment (scFv)) that can bind to a modified peptide (e.g., a tumor antigen), as well as method for using such molecules, are provided.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: November 7, 2023
    Assignee: The Johns Hopkins University
    Inventors: Emily Han-Chung Hsiue, Qing Wang, Bert Vogelstein, Kenneth W. Kinzler, Shibin Zhou, Jacqueline Douglass, Michael S. Hwang, Nickolas Papadopoulos
  • Publication number: 20230338297
    Abstract: The present disclosure provides compositions comprising at least one cyclodextrin and at least one cytotoxic receptor binding small-molecule. Also disclosed are kits containing said compositions. The compositions of the present disclosure can be administered to a subject suffering from at least one type of cancer.
    Type: Application
    Filed: August 31, 2021
    Publication date: October 26, 2023
    Inventors: Jordina RINCON-TORROELLA, Bert Vogelstein, Kenneth W. Kinzler, Shibin Zhou, Nickolas Papadopoulos, Marco Dal Molin, Surojit SUR
  • Publication number: 20230310549
    Abstract: This document relates to methods and materials for preventing cytokine release syndrome (CRS). For example, methods and materials for using one or more catecholamine inhibitors to prevent a mammal from developing CRS are provided.
    Type: Application
    Filed: December 9, 2022
    Publication date: October 5, 2023
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Shibin Zhou, Verena Staedtke, Renyuan Bai, Gregory J. Riggins
  • Patent number: 11773440
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 3, 2023
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Patent number: 11753468
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian