Patents by Inventor Nickolay V. Lavrik

Nickolay V. Lavrik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210138120
    Abstract: Amorphous SiOx (SiO2), SiONx, silicon nitride (Si3N4), surface treatments are provided, on both metal (titanium) and non-metal surfaces. Amorphous silicon-film surface treatments are shown to enhance osteoblast and osteoblast progenitor cell bioactivity, including biomineral formation and osteogenic gene panel expression, as well as enhanced surface hydroxyapatite (HA) formation. A mineralized tissue interface is provided using the amorphous silicon-based surface treatments in the presence of osteoblasts, and provides improved bone cell generation/repair and improved interface for secure attachment/bonding to bone. Methods for providing PEVCD-based silicon overlays onto surfaces are provided. Methods of increasing antioxidant enzyme (e.g., superoxide dismutase) expression at a treated surface for enhanced healing are also provided.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 13, 2021
    Inventors: Venu Varanasi, Pranesh Aswath, Megen Maginot, Nickolay V. Lavrik
  • Patent number: 10023468
    Abstract: Systems and methods for synthesizing continuous graphene sheets are provided. The systems and methods include passing a catalyst substrate through a heated chemical vapor deposition chamber and exposing the substrate to a reaction gas mixture of hydrogen and hydrocarbon at a preselected location within the chamber. The reaction gas mixture can include hydrogen having a partial pressure of between about 0 Torr and 20 Torr, hydrocarbon having a partial pressure of between about 20 mTorr and about 10 Torr, and one or more buffer gases. The buffer gases can include argon or other noble gases to maintain atmospheric pressure within the chemical deposition chamber. The resulting graphene can be made with continuous mono and multilayers (up to six layers) and have single crystalline hexagonal grains with a preselected nucleation density and domain size for a range of applications.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: July 17, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Ivan V. Vlassiouk, Sergei N. Smirnov, William H. Peter, Adrian S. Sabau, Sheng Dai, Pasquale F. Fulvio, Ilia N. Ivanov, Nickolay V. Lavrik, Panagiotis G. Datskos
  • Patent number: 8505382
    Abstract: A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: August 13, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Panagiotis George Datskos, Nickolay V. Lavrik
  • Publication number: 20120206594
    Abstract: A system for ultrasensitive mass and/or force detection of this invention includes a mechanical oscillator driven to oscillate in a nonlinear regime. The mechanical oscillator includes a piezoelectric base with at least one cantilever resonator etched into the piezoelectric base. The cantilever resonator is preferably a nonlinear resonator which is driven to oscillate with a frequency and an amplitude. The system of this invention detects an amplitude collapse of the cantilever resonator at a bifurcation frequency as the cantilever resonator stimulated over a frequency range. As mass and/or force is introduced to the cantilever resonator, the bifurcation frequency shifts along a frequency axis in proportion to the added mass.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Inventors: Panagiotis George Datskos, Nickolay V. Lavrik
  • Publication number: 20120073640
    Abstract: A method for bandgap shift and phase transformation for titania structures. The method can include providing a flexible substrate, depositing a titania film onto the substrate, and exposing the titania film to one or more pulses of infrared energy of sufficient energy density and for a sufficient time to crystallize the titania film to predominantly anatase crystalline phase. The flexible substrate can be formed from a polymeric material, and the method can achieve a bandgap shift from greater than 3.0 eV to approximately 2.4 eV. The method can also include forming a crystalline titania layer over a substrate and annealing the crystalline titania layer by applying pulsed thermal energy sufficient to modify the phase constitution of the crystalline titania layer. The source of pulsed thermal energy can include an infrared flashlamp or laser, and the resulting titania structure can be used with photovoltaic and photoelectrolysis systems.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Claus Daniel, Constantinos Tsouris, Nickolay V. Lavrik, Panagiotis G. Datskos, Ronald D. Ott, Viviane Schwartz, Adrian S. Sabau