Patents by Inventor Nico Boehmer

Nico Boehmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11299522
    Abstract: The present invention relates to a method of producing a recombinant polypeptide a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 2 (CLR2) and to express said recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR2 and the use of this filamentous fungus in the production of a recombinant polypeptide.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: April 12, 2022
    Assignee: BASF SE
    Inventors: Stefan Haefner, Andreas Thywissen, Holger Hartmann, Nico Boehmer
  • Patent number: 11279955
    Abstract: Described herein is a process of producing an organic compound, the process including: I) cultivating a genetically modified microorganism in a culture medium including sucrose as an assimilable carbon source to allow the genetically modified microorganism to produce the organic compound, and II) recovering the organic compound from the fermentation broth obtained in process step I) The genetically modified microorganism includes A) at least one genetic modification that leads to an increased activity of the enzyme encoded by the rbsK-gene, compared to the original microorganism that has not been genetically modified, and the original microorganism belongs to the family Pasteurellaceae. Also described herein are a genetically modified microorganism and the use thereof for the fermentative production of an organic compound from sucrose as an assimilable carbon source.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: March 22, 2022
    Assignee: BASF SE
    Inventors: Hartwig Schroeder, Stefan Haefner, Oskar Zelder, Christoph Wittmann, Anna Christine Schroer, Birgit Hoff, Nico Boehmer
  • Publication number: 20200308235
    Abstract: The present invention relates to a method of producing a recombinant polypeptide a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 2 (CLR2) and to express said recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR2 and the use of this filamentous fungus in the production of a recombinant polypeptide.
    Type: Application
    Filed: December 2, 2016
    Publication date: October 1, 2020
    Inventors: Stefan Haefner, Andreas Thywissen, Holger Hartmann, Nico Boehmer
  • Publication number: 20200181653
    Abstract: Described herein is a process of producing an organic compound, the process including: I) cultivating a genetically modified microorganism in a culture medium including sucrose as an assimilable carbon source to allow the genetically modified microorganism to produce the organic compound, and II) recovering the organic compound from the fermentation broth obtained in process step I) The genetically modified microorganism includes A) at least one genetic modification that leads to an increased activity of the enzyme encoded by the rbsK-gene, compared to the original microorganism that has not been genetically modified, and the original microorganism belongs to the family Pasteurellaceae. Also described herein are a genetically modified microorganism and the use thereof for the fermentative production of an organic compound from sucrose as an assimilable carbon source.
    Type: Application
    Filed: May 18, 2018
    Publication date: June 11, 2020
    Inventors: Hartwig Schroeder, Stefan Haefner, Oskar Zelder, Christoph Wittmann, Anna Christine Schroer, Birgit Hoff, Nico Boehmer
  • Patent number: 10597429
    Abstract: The present invention relates to a method of producing a recombinant polypeptide in a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 1 (CLR1) and to express the recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR1 and to the use of this filamentous fungus in the production of a recombinant polypeptide.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 24, 2020
    Assignee: BASF SE
    Inventors: Stefan Haefner, Andreas Thywissen, Holger Hartmann, Nico Boehmer
  • Publication number: 20180354999
    Abstract: The present invention relates to a method of producing a recombinant polypeptide in a filamentous fungus which is genetically modified to decrease or eliminate the activity of cellulase regulator 1 (CLR1) and to express the recombinant polypeptide. The method further relates to a filamentous fungus Myceliophthora thermophila, which is genetically modified to decrease or eliminate the activity of CLR1 and to the use of this filamentous fungus in the production of a recombinant polypeptide.
    Type: Application
    Filed: December 2, 2016
    Publication date: December 13, 2018
    Inventors: Stefan Haefner, Andreas Thywissen, Holger Hartmann, Nico Boehmer