Patents by Inventor Nico Dosenbach

Nico Dosenbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045011
    Abstract: Systems and methods are provided for producing resting-state functional magnetic resonance imaging (rs-fMRI) images. The method may include receiving functional magnetic resonance imaging (fMRI) data acquired from a subject as the subject is subjected to at least one of performing a task or experiencing a stimulus and reconstructing the fMRI data acquired as the subject is subjected to at least one of performing a task or experiencing a stimulus using a resting-state fMRI (rs-fMRI) reconstruction process without accounting for the at least one of performing the task or experiencing the stimulus to generating rs-fMRI images. The method may also include displaying the rs-fMRI images and/or using the rs-fMRI images to determine motion of the subject during the acquisition of the fMRI data.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 8, 2024
    Inventors: Nico Dosenbach, Ken Bruener, Damien Fair
  • Patent number: 11733332
    Abstract: A method of performing personalized neuromodulation on a subject is provided. The method includes acquiring functional magnetic resonance imaging (fMRI) data of a brain of the subject. The method also includes calculating functional connectivity of the brain between a voxel in a subcortical region of the brain and a voxel in a cortical region of the brain, based on the fMRI data. The method also includes identifying a target location in the brain to be targeted by neuromodulation based on the calculated functional connectivity.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: August 22, 2023
    Assignee: NOUS Imaging, Inc.
    Inventors: Chad Sylvester, Deanna Greene, Scott Marek, Scott Norris, Jarod Roland, Evan Gordon, Timothy Laumann, Damien Fair, Kenneth Bruener, Nico Dosenbach
  • Publication number: 20230228831
    Abstract: A method of performing personalized neuromodulation on a subject is provided. The method includes acquiring functional magnetic resonance imaging (fMRI) data of a brain of the subject. The method also includes calculating functional connectivity of the brain between a voxel in a subcortical region of the brain and a voxel in a cortical region of the brain, based on the fMRI data. The method also includes identifying a target location in the brain to be targeted by neuromodulation based on the calculated functional connectivity.
    Type: Application
    Filed: January 19, 2023
    Publication date: July 20, 2023
    Inventors: Chad Sylvester, Deanna Greene, Scott Marek, Scott Norris, Jared Roland, Evan Gordon, Timothy Laumann, Damien Fair, Kenneth Bruener, Nico Dosenbach
  • Publication number: 20230121804
    Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 20, 2023
    Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
  • Publication number: 20230050594
    Abstract: A method of performing personalized neuromodulation on a subject is provided. The method includes acquiring functional magnetic resonance imaging (fMRI) data of a brain of the subject. The method also includes calculating functional connectivity of the brain between a voxel in a subcortical region of the brain and a voxel in a cortical region of the brain, based on the fMRI data. The method also includes identifying a target location in the brain to be targeted by neuromodulation based on the calculated functional connectivity.
    Type: Application
    Filed: September 21, 2022
    Publication date: February 16, 2023
    Applicant: Washington University
    Inventors: Nico Dosenbach, Chad Sylvester, Deanna Greene, Scott Marek, Scott Norris, Jarod Roland
  • Patent number: 11543483
    Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: January 3, 2023
    Assignees: Washington University, Oregon Health & Science University
    Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
  • Publication number: 20220034986
    Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
  • Publication number: 20210398678
    Abstract: Systems and methods for monitoring neuroplasticity within at least one region of interest of a brain of a subject are disclosed. The method includes transforming at least one time sequence of signals indicative of neural activity into a summary parameter indicative of plasticity pulses. The method further includes evaluating the summary parameter with respect to one or more threshold values to obtain a determination of neuroplasticity within at least one region of interest of the subject. The method may be used to evaluate the efficacy of a neuroactive therapy, such as a neuroactive medication, a physical therapy, an occupational therapy or a speech therapy. The summary parameter obtained using the disclosed method may be displayed to a subject as a biofeedback during a neurotherapy.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 23, 2021
    Applicant: Washington University
    Inventors: Nico Dosenbach, Dillan Newbold
  • Patent number: 11181599
    Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: November 23, 2021
    Assignees: Washington University, Oregon Health and Science University
    Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
  • Publication number: 20210333343
    Abstract: A method of performing personalized neuromodulation on a subject is provided. The method includes acquiring functional magnetic resonance imaging (fMRI) data of a brain of the subject. The method also includes calculating functional connectivity of the brain between a voxel in a subcortical region of the brain and a voxel in a cortical region of the brain, based on the fMRI data. The method also includes identifying a target location in the brain to be targeted by neuromodulation based on the calculated functional connectivity.
    Type: Application
    Filed: December 9, 2020
    Publication date: October 28, 2021
    Inventor: Nico Dosenbach
  • Publication number: 20210170180
    Abstract: A method of performing personalized neuromodulation on a subject is provided. The method includes acquiring functional magnetic resonance imaging (fMRI) data of a brain of the subject. The method also includes calculating functional connectivity of the brain between a voxel in a subcortical region of the brain and a voxel in a cortical region of the brain, based on the fMRI data. The method also includes identifying a target location in the brain to be targeted by neuromodulation based on the calculated functional connectivity.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 10, 2021
    Applicant: Washington University
    Inventors: Nico Dosenbach, Chad Sylvester, Deanna Greene, Scott Marek, Scott Norris, Jarod Roland
  • Publication number: 20200225308
    Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 16, 2020
    Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone