Patents by Inventor Nicolae Varachiu

Nicolae Varachiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9074983
    Abstract: The design and deposition of a sensing layer for room temperature SAW/BAW chemical sensors utilizing macrocyclic compounds in accordance with supra-molecular chemistry principles. The gas to be sensed is attached to the organic sensing film thus changing its visco-elastic properties and creating a mass increase of the film deposited on the surface of SAW/BAW devices. A direct printing method can be used as an additive, mask-less procedure to deposit metallic interdigital transducers and electrodes required for SAW/BAW devices, along with the deposition of a guiding layer and the organic films only on the location required by the sensing SAW/BAW principle of the sensor. Different thermal treatment solutions can be used for the consolidation of the gelly organic films deposited by the direct printing methods.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 7, 2015
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Catalin Serban, Viorel V. Avramescu, Cornel P. Cobianu, Ion Georgescu, Nicolae Varachiu
  • Patent number: 7913541
    Abstract: The design and synthesis of a matrix nanocomposite containing amino carbon nanotubes used as a functionalized sensing layer for carbon dioxide detection by means acoustic wave sensing devices, e.g., SAW/BAW devices. These sensing materials contain a type of amino carbon nanotubes (single walled or multi-walled) and a polymer (or other compounds) which are sensitive to carbon dioxide in the acoustic wave sensing device based gas sensors. The sensitivity of the matrix consisting of the amino carbon nanotubes and a polymer (or other compounds) is ensured by the presence of amino groups which can react at room temperature with CO2 in a reversible process to form carbamates.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 29, 2011
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Catalin Serban, Cornel P. Cobianu, Mircea Bercu, Nicolae Varachiu, Mihai N. Mihaila, Cazimir G. Bostan, Stefan Ioan Voicu
  • Patent number: 7867552
    Abstract: Methods can be adapted for design of a sensitive monolayer for detection of hydrogen sulphide at room temperature with SAW/BAW devices. The sensitive monolayer can be synthesized based on chemical compounds, which belongs to a class of thiacalix[n]arenas, mercapto halides, mercapto alcohols and chloromethylated thiacalix[n]arenas. The sensitive monolayer can be directly immobilized or anchored at the surface of a piezoelectric quartz substrate in a covalently bonded manner by means of direct printing process. The piezoelectric quartz substrate can be activated in basic medium or in acid medium before the immobilization of the sensitive monolayer in order to increase the population of OH groups. Thus, the synthesized sensitive monolayer exhibits a high site density, fast response and long-term stability for H2S sensing.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: January 11, 2011
    Assignee: Honeywell International Inc.
    Inventors: Bogdan-Catalin Serban, Viorel-Georgel Dumitru, Cornel P. Cobianu, Stefan-Dan Costea, Nicolae Varachiu, Stefan I. Voicu
  • Publication number: 20090280031
    Abstract: Methods can be adapted for design of a sensitive monolayer for detection of hydrogen sulphide at room temperature with SAW/BAW devices. The sensitive monolayer can be synthesized based on chemical compounds, which belongs to a class of thiacalix[n]arenas, mercapto halides, mercapto alcohols and chloromethylated thiacalix[n]arenas. The sensitive monolayer can be directly immobilized or anchored at the surface of a piezoelectric quartz substrate in a covalently bonded manner by means of direct printing process. The piezoelectric quartz substrate can be activated in basic medium or in acid medium before the immobilization of the sensitive monolayer in order to increase the population of OH groups. Thus, the synthesized sensitive monolayer exhibits a high site density, fast response and long-term stability for H2S sensing.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Inventors: Bogdan-Catalin Serban, Viorel-Georgel Dumitru, Cornel P. Cobianu, Stefan-Dan Costea, Nicolae Varachiu, Stefan I. Voicu
  • Publication number: 20080264147
    Abstract: The design and synthesis of a matrix nanocomposite containing amino carbon nanotubes used as a functionalized sensing layer for carbon dioxide detection by means acoustic wave sensing devices, e.g., SAW/BAW devices. These sensing materials contain a type of amino carbon nanotubes (single walled or multi-walled) and a polymer (or other compounds) which are sensitive to carbon dioxide in the acoustic wave sensing device based gas sensors. The sensitivity of the matrix consisting of the amino carbon nanotubes and a polymer (or other compounds) is ensured by the presence of amino groups which can react at room temperature with CO2 in a reversible process to form carbamates.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Bogdan Catalin Serban, Cornel P. Cobianu, Mircea Bercu, Nicolae Varachiu, Mihai N. Mihaila, Cazimir G. Bostan, Stefan loan Voicu
  • Publication number: 20080229831
    Abstract: The design and deposition of a sensing layer for room temperature SAW/BAW chemical sensors utilizing macrocyclic compounds in accordance with supra-molecular chemistry principles. The gas to be sensed is attached to the organic sensing film thus changing its visco-elastic properties and creating a mass increase of the film deposited on the surface of SAW/BAW devices. A direct printing method can be used as an additive, mask-less procedure to deposit metallic interdigital transducers and electrodes required for SAW/BAW devices, along with the deposition of a guiding layer and the organic films only on the location required by the sensing SAW/BAW principle of the sensor. Different thermal treatment solutions can be used for the consolidation of the gelly organic films deposited by the direct printing methods.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Bogdan Catalin Serban, Viorel V. Avramescu, Cornel P. Cobianu, Ion Georgescu, Nicolae Varachiu