Patents by Inventor Nicolas Brieu

Nicolas Brieu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11748981
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: September 5, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Publication number: 20230177341
    Abstract: A convolutional neural network predicts which regions of a tissue slice would be stained by a first stain by training a model to identify those regions based only on tissue stained by a second stain. Thereafter the first stain need not be used to mark cancerous regions on other tissue slices that are stained with the second stain. The training slice is stained with a first immunohistochemical stain and a second counterstain. A target region of an image of the training slice is identified using image analysis based on the first stain. A set of parameters for associated mathematical operations are optimized to train the model to classify pixels of the image as belonging to the target region based on the second stain but not on the first stain. The trained parameters are stored in a database and applied to other images of tissue not stained with the first stain.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 8, 2023
    Inventors: Tobias Wiestler, Simon Lanzmich, Nicolas Brieu, Guenter Schmidt, Moritz Widmaier
  • Patent number: 11593656
    Abstract: A convolutional neural network predicts which regions of a tissue slice would be stained by a first stain by training a model to identify those regions based only on tissue stained by a second stain. Thereafter the first stain need not be used to mark cancerous regions on other tissue slices that are stained with the second stain. The training slice is stained with a first immunohistochemical stain and a second counterstain. A target region of an image of the training slice is identified using image analysis based on the first stain. A set of parameters for associated mathematical operations are optimized to train the model to classify pixels of the image as belonging to the target region based on the second stain but not on the first stain. The trained parameters are stored in a database and applied to other images of tissue not stained with the first stain.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 28, 2023
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Tobias Wiestler, Simon Lanzmich, Nicolas Brieu, Guenter Schmidt, Moritz Widmaier
  • Publication number: 20220254020
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Application
    Filed: April 27, 2022
    Publication date: August 11, 2022
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11348231
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: May 31, 2022
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Patent number: 11030744
    Abstract: A score of a histopathological diagnosis of cancer is generated by loading an image patch of an image into a processing unit, determining how many pixels of the image patch belong to a first tissue, processing additional image patches cropped from the image to determine how many pixels of each image patch belong to the first tissue, computing the score and displaying it along with the image on a graphical user interface. The image patch is cropped from the image of a slice of tissue that has been immunohistochemically stained using a diagnostic antibody. The first tissue comprises tumor epithelial cells that are positively stained by the diagnostic antibody. Determining how many pixels belong to the first tissue is performed by processing the image patch using a convolutional neural network. The score of the histopathological diagnosis is computed based on the total number of pixels belonging to the first tissue.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 8, 2021
    Assignee: AstraZeneca Computational Pathology GmbH
    Inventors: Ansh Kapil, Nicolas Brieu
  • Publication number: 20200184641
    Abstract: A method for indicating how a cancer patient will respond to a predetermined therapy relies on spatial statistical analysis of classes of cell centers in a digital image of tissue of the cancer patient. The cell centers are detected in the image of stained tissue of the cancer patient. For each cell center, an image patch that includes the cell center is extracted from the image. A feature vector is generated based on each image patch using a convolutional neural network. A class is assigned to each cell center based on the feature vector associated with each cell center. A score is computed for the image of tissue by performing spatial statistical analysis based on classes of the cell centers. The score indicates how the cancer patient will respond to the predetermined therapy. The predetermined therapy is recommended to the patient if the score is larger than a predetermined threshold.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 11, 2020
    Inventors: Guenter Schmidt, Nicolas Brieu, Ansh Kapil, Jan Martin Lesniak
  • Publication number: 20190392580
    Abstract: A score of a histopathological diagnosis of cancer is generated by loading an image patch of an image into a processing unit, determining how many pixels of the image patch belong to a first tissue, processing additional image patches cropped from the image to determine how many pixels of each image patch belong to the first tissue, computing the score and displaying it along with the image on a graphical user interface. The image patch is cropped from the image of a slice of tissue that has been immunohistochemically stained using a diagnostic antibody. The first tissue comprises tumor epithelial cells that are positively stained by the diagnostic antibody. Determining how many pixels belong to the first tissue is performed by processing the image patch using a convolutional neural network. The score of the histopathological diagnosis is computed based on the total number of pixels belonging to the first tissue.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Inventors: Ansh Kapil, Nicolas Brieu
  • Patent number: 10474874
    Abstract: Both pixel-oriented analysis and the more accurate yet slower object-oriented analysis are used to recognize patterns in images of stained cancer tissue. Images of tissue from other patients that are similar to tissue of a target patient are identified using the standard deviation of color in the images. Object-oriented segmentation is then used to segment small portions of the images of the other patients into object exhibiting object characteristics. Pixelwise descriptors associate each pixel in the remainder of the images with object characteristics based on the color of pixels at predetermined offsets from the characterized pixel. Pixels in the image of the target patient are assigned object characteristics without performing the slow segmentation of the image into objects. A pixel heat map is generated from the target image by assigning pixels the color corresponding to the object characteristic that the pixelwise descriptors indicate is most likely associated with each pixel.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: November 12, 2019
    Assignee: Definiens AG
    Inventor: Nicolas Brieu
  • Patent number: 10445557
    Abstract: Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: October 15, 2019
    Assignee: Definiens AG
    Inventors: Olivier Pauly, Nicolas Brieu, Guenter Schmidt, Johannes Zimmermann, Gerd Binnig
  • Publication number: 20190205760
    Abstract: A convolutional neural network predicts which regions of a tissue slice would be stained by a first stain by training a model to identify those regions based only on tissue stained by a second stain. Thereafter the first stain need not be used to mark cancerous regions on other tissue slices that are stained with the second stain. The training slice is stained with a first immunohistochemical stain and a second counterstain. A target region of an image of the training slice is identified using image analysis based on the first stain. A set of parameters for associated mathematical operations are optimized to train the model to classify pixels of the image as belonging to the target region based on the second stain but not on the first stain. The trained parameters are stored in a database and applied to other images of tissue not stained with the first stain.
    Type: Application
    Filed: December 14, 2018
    Publication date: July 4, 2019
    Inventors: Tobias Wiestler, Simon Lanzmich, Nicolas Brieu, Guenter Schmidt, Moritz Widmaier
  • Publication number: 20180053033
    Abstract: Both pixel-oriented analysis and the more accurate yet slower object-oriented analysis are used to recognize patterns in images of stained cancer tissue. Images of tissue from other patients that are similar to tissue of a target patient are identified using the standard deviation of color in the images. Object-oriented segmentation is then used to segment small portions of the images of the other patients into object exhibiting object characteristics. Pixelwise descriptors associate each pixel in the remainder of the images with object characteristics based on the color of pixels at predetermined offsets from the characterized pixel. Pixels in the image of the target patient are assigned object characteristics without performing the slow segmentation of the image into objects. A pixel heat map is generated from the target image by assigning pixels the color corresponding to the object characteristic that the pixelwise descriptors indicate is most likely associated with each pixel.
    Type: Application
    Filed: September 28, 2017
    Publication date: February 22, 2018
    Inventor: Nicolas Brieu
  • Publication number: 20170337415
    Abstract: Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 23, 2017
    Inventors: Olivier Pauly, Nicolas Brieu, Guenter Schmidt, Johannes Zimmermann, Gerd Binnig
  • Patent number: 9805248
    Abstract: Both pixel-oriented analysis and the more accurate yet slower object-oriented analysis are used to recognize patterns in images of stained cancer tissue. Images of tissue from other patients that are similar to tissue of a target patient are identified using the standard deviation of color in the images. Object-oriented segmentation is then used to segment small portions of the images of the other patients into object exhibiting object characteristics. Pixelwise descriptors associate each pixel in the remainder of the images with object characteristics based on the color of pixels at predetermined offsets from the characterized pixel. Pixels in the image of the target patient are assigned object characteristics without performing the slow segmentation of the image into objects. A pixel heat map is generated from the target image by assigning pixels the color corresponding to the object characteristic that the pixelwise descriptors indicate is most likely associated with each pixel.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: October 31, 2017
    Assignee: Definiens AG
    Inventor: Nicolas Brieu
  • Patent number: 9740957
    Abstract: Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: August 22, 2017
    Assignee: Definiens AG
    Inventors: Olivier Pauly, Nicolas Brieu, Guenter Schmidt, Johannes Zimmermann, Gerd Binnig
  • Publication number: 20160098589
    Abstract: Both pixel-oriented analysis and the more accurate yet slower object-oriented analysis are used to recognize patterns in images of stained cancer tissue. Images of tissue from other patients that are similar to tissue of a target patient are identified using the standard deviation of color in the images. Object-oriented segmentation is then used to segment small portions of the images of the other patients into object exhibiting object characteristics. Pixelwise descriptors associate each pixel in the remainder of the images with object characteristics based on the color of pixels at predetermined offsets from the characterized pixel. Pixels in the image of the target patient are assigned object characteristics without performing the slow segmentation of the image into objects. A pixel heat map is generated from the target image by assigning pixels the color corresponding to the object characteristic that the pixelwise descriptors indicate is most likely associated with each pixel.
    Type: Application
    Filed: November 26, 2015
    Publication date: April 7, 2016
    Inventor: Nicolas Brieu
  • Publication number: 20160063308
    Abstract: Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 3, 2016
    Inventors: Olivier Pauly, Nicolas Brieu, Guenter Schmidt, Johannes Zimmermann, Gerd Binnig
  • Patent number: 9177378
    Abstract: The coregistration of digital images of tissue slices is improved by updating landmarks based on the manual outlining of regions of interest on the images. A first image of a first slice is coarsely coregistered with a second image of a second slice using a first landmark on the first image and a second landmark on the second image. A user manually outlines a first region of interest on the first image. The outline is positioned over a second region of interest on the second image using the second landmark. The user manually moves a contour point of the outline on the second image to form a corrected outline. The second landmark is moved based on how the contour point was manually moved so that the first and second images are more finely coregistered after the second landmark is moved. Each state of corrected contour points and landmarks is saved.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: November 3, 2015
    Assignee: Definiens AG
    Inventors: Ralf Schoenmeyer, Mehmet Yigitsoy, Nicolas Brieu
  • Publication number: 20150287194
    Abstract: The coregistration of digital images of tissue slices is improved by updating landmarks based on the manual outlining of regions of interest on the images. A first image of a first slice is coarsely coregistered with a second image of a second slice using a first landmark on the first image and a second landmark on the second image. A user manually outlines a first region of interest on the first image. The outline is positioned over a second region of interest on the second image using the second landmark. The user manually moves a contour point of the outline on the second image to form a corrected outline. The second landmark is moved based on how the contour point was manually moved so that the first and second images are more finely coregistered after the second landmark is moved. Each state of corrected contour points and landmarks is saved.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Ralf Schoenmeyer, Mehmet Yigitsoy, Nicolas Brieu
  • Patent number: 9060672
    Abstract: A method for coregistering images involves defining middle paths through image objects depicting tissue slices of needle biopsies. First landmarks are defined on a first middle path through a first image object in a first digital image of a first tissue slice, and second landmarks are defined on a second middle path through a second image object of a second digital image of a second tissue slice. Individual first landmarks are associated with individual second landmarks. A first pixel in the first object is coregistered with a second pixel in the second object using multiple first and second landmarks. The first image is displayed in a first frame on a graphical user interface, and the second image is displayed in a second frame such that the first pixel is centered in the first frame, the second pixel is centered in the second frame, and the images have the same orientations.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 23, 2015
    Assignee: Definiens AG
    Inventors: Nicolas Brieu, Melanie Goerner, Guenter Schmidt, Gerd Binnig