Patents by Inventor Nicolas Gebert

Nicolas Gebert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8134490
    Abstract: A continually adapted pulse-to-pulse shift, performed in the azimuth direction, of the phase center which is electrically active on the side of the transmitting antenna (Tx; Tx1, Tx2, Tx3), in connection with the SAR antenna control of a multi-aperture SAR system is designed such that, in the case of an existing pulse repetition frequency (PRF) due to the likewise shifted position of the effective phase center of the entire antenna (Tx; Tx1, Tx2, Tx3; Rx; Rx1, Rx2, Rx3), a compensation or complete correction of non-equidistant scanning in the azimuth direction is achieved. The principle of the pulse-to-pulse shift of the position of the effective phase center of the antenna for achieving the best possible equidistant scanning can be expanded to the side of the receiving antenna (Rx; Rx1, Rx2, Rx3) and to multi-aperture antennas. The technological solution proposed by the invention can be advantageously combined with a subsequent digital beam formation on the receiving antenna side.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Deutsches Zentrum fur Luft-und Raumfahrt E.V.
    Inventors: Nicolas Gebert, Gerhard Krieger
  • Patent number: 7944390
    Abstract: The transmission antenna (10) of the high-resolution synthetic aperture side view radar system comprises a plurality of sub-apertures (7, 8, 9). In each individual transmission pulse, said sub-apertures are controlled in such a manner that a spatiotemporally non-separable multi-dimensional high-frequency waveform is produced as an transmission signal pulse form, such that the modulation of each transmission pulse has a spatiotemporal diversity which is not described by the product having functions which are independent from each other and which are dependent on, respectively, only one spatial dimension. The thus produced transmission pulse form is combined to a capture-sided spatial filtering by means of digital beamforming adapted to said transmission signal pulse form.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 17, 2011
    Assignee: Deutsches Zentrum für Luft- und Raumfahrt e.V.
    Inventors: Gerhard Krieger, Nicolas Gebert, Alberto Moreira
  • Publication number: 20100164785
    Abstract: A continually adapted pulse-to-pulse shift, performed in the azimuth direction, of the phase center which is electrically active on the side of the transmitting antenna (Tx; Tx1, Tx2, Tx3), in connection with the SAR antenna control of a multi-aperture SAR system is designed such that, in the case of an existing pulse repetition frequency (PRF) due to the likewise shifted position of the effective phase center of the entire antenna (Tx; Tx1, Tx2, Tx3; Rx; Rx1, Rx2, Rx3), a compensation or complete correction of non-equidistant scanning in the azimuth direction is achieved. The principle of the pulse-to-pulse shift of the position of the effective phase center of the antenna for achieving the best possible equidistant scanning can be expanded to the side of the receiving antenna (Rx; Rx1, Rx2, Rx3) and to multi-aperture antennas. The technological solution proposed by the invention can be advantageously combined with a subsequent digital beam formation on the receiving antenna side.
    Type: Application
    Filed: August 8, 2008
    Publication date: July 1, 2010
    Applicant: DEUTSCHES ZENTRUM FÜR LUFT-UND RAUMFAHRT E.V.
    Inventors: Nicolas Gebert, Gerhard Krieger
  • Publication number: 20090109086
    Abstract: The transmission antenna (10) of the high-resolution synthetic aperture side view radar system comprises a plurality of sub-apertures (7, 8, 9). In each individual transmission pulse, said sub-apertures are controlled in such a manner that a spatiotemporally non-separable multi-dimensional high-frequency waveform is produced as an transmission signal pulse form, such that the modulation of each transmission pulse has a spatiotemporal diversity which is not described by the product having functions which are independent from each other and which are dependent on, respectively, only one spatial dimension. The thus produced transmission pulse form is combined to a capture-sided spatial filtering by means of digital beamforming adapted to said transmission signal pulse form.
    Type: Application
    Filed: May 4, 2007
    Publication date: April 30, 2009
    Inventors: Gerhard Krieger, Nicolas Gebert, Alberto Moreira