Patents by Inventor Nicolas J. Bright

Nicolas J. Bright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079212
    Abstract: Embodiments of the disclosure include a method of processing a substrate in a plasma processing system, comprising delivering an RF signal, by an RF generator, through an RF match to an electrode assembly disposed within the plasma processing system, wherein while delivering the RF signal the RF match is set to a first matching point, and delivering a voltage waveform, by a waveform generator, to the electrode assembly disposed within the plasma processing system while the RF signal is delivered to the electrode assembly.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 7, 2024
    Inventors: Yue GUO, Kartik RAMASWAMY, Nicolas J. BRIGHT, Yang YANG, A N M Wasekul AZAD
  • Publication number: 20230187176
    Abstract: A semiconductor processing system may include a semiconductor processing chamber configured to execute a recipe on a semiconductor wafer. The system may include a first plasma source to provide plasma to the semiconductor processing chamber and to be duty cycled during an execution of the recipe. The system may also include a second plasma source configured to maintain the plasma in the semiconductor processing chamber while the first plasma source is duty cycled.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Kostiantyn Achkasov, Nicolas J. Bright, Fernando M. Silveira, Yang Yang, Yue Guo
  • Publication number: 20220213959
    Abstract: An apparatus for processing a substrate is disclosed and includes, in one embodiment, a twin chamber housing having two openings formed therethrough, a first pump interface member coaxially aligned with one of the two openings formed in the twin chamber housing, and a second pump interface member coaxially aligned with another of the two openings formed in the twin chamber housing, wherein each of the pump interface members include three channels that are concentric with a centerline of the two openings.
    Type: Application
    Filed: March 23, 2022
    Publication date: July 7, 2022
    Inventors: Bradley J. HOWARD, Nicolas J. BRIGHT, Andrew NGUYEN
  • Patent number: 11333246
    Abstract: An apparatus for processing a substrate is disclosed and includes, in one embodiment, a twin chamber housing having two openings formed therethrough, a first pump interface member coaxially aligned with one of the two openings formed in the twin chamber housing, and a second pump interface member coaxially aligned with another of the two openings formed in the twin chamber housing, wherein each of the pump interface members include three channels that are concentric with a centerline of the two openings.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: May 17, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Andrew Nguyen, Bradley J. Howard, Nicolas J. Bright
  • Publication number: 20170178758
    Abstract: The present disclosure generally relates to a radiation shield for a process chamber which improves substrate temperature uniformity. The radiation shield may be disposed between a slit valve door of the process chamber and a substrate support disposed within the process chamber. In some embodiments, the radiation shield may be disposed under a heater of the process chamber. Furthermore, the radiation shield may block radiation and/or heat supplied from the process chamber, and in some embodiments, the radiation shield may absorb and/or reflect radiation, thus providing improved temperature uniformity as well as improving a planar profile of the substrate.
    Type: Application
    Filed: December 5, 2016
    Publication date: June 22, 2017
    Inventors: Sungwon HA, Paul CONNORS, Jianhua ZHOU, Juan Carlos ROCHA-ALVAREZ, Kwangduk Douglas LEE, Ziqing DUAN, Nicolas J. BRIGHT, Feng BI
  • Publication number: 20160215883
    Abstract: An apparatus for processing a substrate is disclosed and includes, in one embodiment, a twin chamber housing having two openings formed therethrough, a first pump interface member coaxially aligned with one of the two openings formed in the twin chamber housing, and a second pump interface member coaxially aligned with another of the two openings formed in the twin chamber housing, wherein each of the pump interface members include three channels that are concentric with a centerline of the two openings.
    Type: Application
    Filed: April 22, 2015
    Publication date: July 28, 2016
    Inventors: ANDREW NGUYEN, Bradley J. HOWARD, Nicolas J. BRIGHT
  • Patent number: 8871650
    Abstract: Post etch treatments (PETs) of low-k dielectric films are described. For example, a method of patterning a low-k dielectric film includes etching a low-k dielectric layer disposed above a substrate with a first plasma process. The etching involves forming a fluorocarbon polymer on the low-k dielectric layer. The low-k dielectric layer is surface-conditioned with a second plasma process. The surface-conditioning removes the fluorocarbon polymer and forms an Si—O-containing protecting layer on the low-k dielectric layer. The Si—O-containing protecting layer is removed with a third plasma process.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: October 28, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas D. Nemani, Nicolas J. Bright, Thorsten B. Lill, Yifeng Zhou, Jamie Saephan, Ellie Yieh
  • Publication number: 20130109187
    Abstract: Post etch treatments (PETs) of low-k dielectric films are described. For example, a method of patterning a low-k dielectric film includes etching a low-k dielectric layer disposed above a substrate with a first plasma process. The etching involves forming a fluorocarbon polymer on the low-k dielectric layer. The low-k dielectric layer is surface-conditioned with a second plasma process. The surface-conditioning removes the fluorocarbon polymer and forms an Si—O-containing protecting layer on the low-k dielectric layer. The Si—O-containing protecting layer is removed with a third plasma process.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Inventors: Srinivas D. Nemani, Nicolas J. Bright, Thorsten B. Lill, Yifeng Zhou, Jamie Saephan, Ellie Yieh
  • Patent number: 7501339
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry. The etching is timed to etch through a partial thickness of the low dielectric constant layer and the first etch chemistry is optimized to a selected low dielectric constant material. The method further includes forming a via hole in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In a specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: March 10, 2009
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 7309618
    Abstract: A semiconductor processing system is provided. The semiconductor processing system includes a first sensor configured to isolate and measure a film thickness signal portion for a wafer having a film disposed over a substrate. A second sensor is configured to detect a film thickness dependent signal in situ during processing, i.e. under real process conditions and in real time. A controller configured to receive a signal from the first sensor and a signal from the second sensor. The controller is capable of determining a calibration coefficient from data represented by the signal from the first sensor. The controller is capable of applying the calibration coefficient to the data associated with the second sensor, wherein the calibration coefficient substantially eliminates inaccuracies introduced to the film thickness dependent signal from the substrate. A method for calibrating an eddy current sensor is also provided.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: December 18, 2007
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Patent number: 7084621
    Abstract: A method and an apparatus for enhancement of the for measuring resistance-based features of a substrate is provided. The apparatus includes a sensor configured to detect a signal produced by a eddy current generated electromagnetic field. The magnetic field enhancing source is positioned to the alternative side of the object under measurement relative to the sensor to enable the sensitivity enhancing action. The sensitivity enhancing source increases the intensity of the eddy current generated in the object under measurement, and as a result the sensitivity of the sensor. A system enabled to determine a thickness of a layer and a method for determining a resistance-based feature characteristic are also provided.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: August 1, 2006
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Patent number: 7060605
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: June 13, 2006
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 7010468
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: March 7, 2006
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas J. Bright
  • Patent number: 6951624
    Abstract: A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A sensor array external to the CMP tool is included. The sensor array is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The sensor array provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: October 4, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Patent number: 6922053
    Abstract: A method for detecting a thickness of a layer of a wafer to be processed is provided. The method includes defining a plurality of sensors configured to create a set of complementary sensors proximate the wafer. Further included in the method is distributing the plurality of sensors along a particular radius of the wafer such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: July 26, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Patent number: 6909190
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: June 21, 2005
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6894491
    Abstract: A method for detecting a thickness of a layer of a wafer is provided. The method includes defining a particular radius of a wafer carrier configured to engage the wafer to be processed. The method also includes providing a plurality of sensors configured to create a set of complementary sensors. Further included in the method is distributing the plurality of sensors along the particular radius within the wafer carrier such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 17, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Patent number: 6859765
    Abstract: A method for converting a slope based detection task to a threshold based detection task is provided. The method initiates with defining an approximation equation for a set of points corresponding to values of a process being monitored. Then, an expected value at a current point of the process being monitored is predicted. Next, a difference between a measured value at the current point of the process being monitored and the corresponding expected value is calculated. Then, the difference is monitored for successive points to detect a deviation value between the measured value and the expected value. Next, a transition point for the process being monitored is identified based on the detection of the deviation value. A processing system configured to provide real time data for a slope based transition and a computer readable media are also provided.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: February 22, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Vladimir Katz, David Hemker, Rodney Kistler, Nicolas J. Bright
  • Patent number: 6808590
    Abstract: A system for processing a wafer is provided. The system includes a chemical mechanical planarization (CMP) tool. The CMP tool includes a wafer carrier defined within a housing. A carrier film is affixed to the bottom surface and supports a wafer. A sensor embedded in the wafer carrier. The sensor is configured to induce an eddy current in the wafer to determine a proximity and a thickness of the wafer. A sensor array external to the CMP tool is included. The sensor array is in communication with the sensor embedded in the wafer carrier and substantially eliminates a distance sensitivity. The sensor array provides an initial thickness of the wafer to allow for a calibration to be performed on the sensor embedded in the wafer carrier. The calibration offsets variables causing inaccuracies in the determination of the thickness of the wafer during CMP operation. A method and an apparatus are also provided.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 26, 2004
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright
  • Publication number: 20040119468
    Abstract: A method for detecting a thickness of a layer of a wafer is provided. The method includes defining a particular radius of a wafer carrier configured to engage the wafer to be processed. The method also includes providing a plurality of sensors configured to create a set of complementary sensors. Further included in the method is distributing the plurality of sensors along the particular radius within the wafer carrier such that each sensor of the plurality of sensors is out of phase with an adjacent sensor by a same angle. The method also includes measuring signals generated by the plurality of sensors. Further included is averaging the signals generated by the plurality of sensors so as to generate a combination signal. The averaging is configured to remove noise from the combination signal such that the combination signal is capable of being correlated to identify the thickness of the layer.
    Type: Application
    Filed: December 23, 2002
    Publication date: June 24, 2004
    Applicant: LAM RESEARCH CORP.
    Inventors: Yehiel Gotkis, Rodney Kistler, Aleksander Owczarz, David Hemker, Nicolas J. Bright