Patents by Inventor Nicolas Wein

Nicolas Wein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230025574
    Abstract: The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
    Type: Application
    Filed: December 9, 2021
    Publication date: January 26, 2023
    Inventors: Kevin Flanigan, Adeline Vulin-Chaffiol, Nicolas Wein
  • Patent number: 11230707
    Abstract: The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 25, 2022
    Assignee: RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL
    Inventors: Kevin Flanigan, Adeline Vulin-Chaffiol, Nicolas Wein
  • Patent number: 11180755
    Abstract: The present invention relates to methods for shifting the splicing profile of the DUX4 gene, a double homeobox gene on human chromosome 4q35. Recombinant adeno-associated viruses of the invention deliver DNAs encoding U7-based small nuclear RNAs to induce DUX4 exon-skipping and the expression of shortened forms of DUX4. The methods have application in the treatment of muscular dystrophies such as facioscapulohumeral muscular dystrophy.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 23, 2021
    Assignee: RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL
    Inventors: Scott Quenton Harper, Nicolas Wein
  • Patent number: 11053494
    Abstract: The present invention relates to the delivery of oligomers for treating patients with a 5? mutation in their DMD gene other than a DMD exon 2 duplication. The invention provides methods and materials for activating an internal ribosome entry site in exon 5 of the DMD gene resulting in translation of a functional truncated isoform of dystrophin. The methods and materials can be used for the treatment of muscular dystrophies arising from 5? mutations in the DMD gene such as Duchenne Muscular Dystrophy or Becker Muscular Dystrophy.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: July 6, 2021
    Assignees: RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL, THE UNIVERSITY OF WESTERN AUSTRALIA
    Inventors: Kevin Flanigan, Nicolas Wein, Stephen Wilton
  • Publication number: 20190276822
    Abstract: The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
    Type: Application
    Filed: July 11, 2018
    Publication date: September 12, 2019
    Inventors: Kevin Flanigan, Adeline Vulin-Chaffiol, Nicolas Wein
  • Patent number: 9862945
    Abstract: The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: January 9, 2018
    Assignee: RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL
    Inventors: Kevin Flanigan, Adeline Vulin-Chaffiol, Nicolas Wein
  • Publication number: 20170218366
    Abstract: The present invention relates to the delivery of oligomers for treating patients with a 5? mutation in their DMD gene other than a DMD exon 2 duplication. The invention provides methods and materials for activating an internal ribosome entry site in exon 5 of the DMD gene resulting in translation of a functional truncated isoform of dystrophin. The methods and materials can be used for the treatment of muscular dystrophies arising from 5? mutations in the DMD gene such as Duchenne Muscular Dystrophy or Becker Muscular Dystrophy.
    Type: Application
    Filed: August 7, 2015
    Publication date: August 3, 2017
    Inventors: Kevin Flanigan, Nicolas Wein, Steven Wilton
  • Publication number: 20160076028
    Abstract: The present invention relates to recombinant adeno-associated virus (rAAV) delivery of polynucleotides for treating Duchenne Muscular Dystrophy resulting from the duplication of DMD exon 2. The invention provides rAAV products and methods of using the rAAV in the treatment of Duchenne Muscular Dystrophy.
    Type: Application
    Filed: April 18, 2014
    Publication date: March 17, 2016
    Applicant: RESEARCH INSTITUTE AT NATIONWIDE CHILDREN'S HOSPITAL
    Inventors: Kevin Flanigan, Aneline Vulin-Chaffiol, Nicolas Wein