Patents by Inventor Nicole Jessica Tibbetts

Nicole Jessica Tibbetts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952906
    Abstract: A machine is cleaned by directing a foam detergent into the machine to remove contaminants from inside the machine. An effluent portion of the foam detergent exits from the machine with some of the contaminants. One or more of a turbidity, a salinity, an amount of total dissolved solids, or a concentration the contaminants in the effluent is measured. A cleaning time period during which the foam detergent is to be directed into the machine is determined based on the turbidity, the salinity, the amount of total dissolved solids, and/or the contaminant concentration that is measured from the effluent. The foam detergent continues to be directed into the machine during the cleaning time period, and the flow of the foam detergent into the machine is terminated on expiration of the time period.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 9, 2024
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Michael Eriksen, Keith Anthony Lauria, Richard Schliem, Erica Sampson, Eric Telfeyan
  • Publication number: 20240076998
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Application
    Filed: June 1, 2023
    Publication date: March 7, 2024
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Publication number: 20240060010
    Abstract: A cleaning solution for a turbine engine includes water; a first organic acidic component that comprises citric acid; a second organic acidic component that comprises glycolic acid; isopropylamine sulphonate; alcohol ethoxylate; triethanol amine; and sodium lauriminodipropionate. The cleaning solution has a pH value between about 2.5 and about 7.0.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 22, 2024
    Inventors: Nicole Jessica Tibbetts, Evan J. Dolley, Bernard Patrick Bewlay, Denise Anne Anderson, Nathan David McLean, Eric John Telfeyan, Frank Wagenbaugh
  • Patent number: 11834632
    Abstract: A cleaning solution for a turbine engine includes water; a first organic acidic component that comprises citric acid; a second organic acidic component that comprises glycolic acid; isopropylamine sulphonate; alcohol ethoxylate; triethanol amine; and sodium lauriminodipropionate. The cleaning solution has a pH value between about 2.5 and about 7.0.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: December 5, 2023
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Evan J Dolley, Bernard Patrick Bewlay, Denise Anne Anderson, Nathan David McLean, Eric John Telfeyan, Frank Wagenbaugh
  • Publication number: 20230250731
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew James Jenkins
  • Patent number: 11702956
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Patent number: 11649735
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 16, 2023
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 11591928
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Patent number: 11578613
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria
  • Patent number: 11555413
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Byron Andrew Pritchard, Jr., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Publication number: 20220389834
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Publication number: 20220298927
    Abstract: A machine is cleaned by directing a foam detergent into the machine to remove contaminants from inside the machine. An effluent portion of the foam detergent exits from the machine with some of the contaminants. One or more of a turbidity, a salinity, an amount of total dissolved solids, or a concentration the contaminants in the effluent is measured. A cleaning time period during which the foam detergent is to be directed into the machine is determined based on the turbidity, the salinity, the amount of total dissolved solids, and/or the contaminant concentration that is measured from the effluent. The foam detergent continues to be directed into the machine during the cleaning time period, and the flow of the foam detergent into the machine is terminated on expiration of the time period.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 22, 2022
    Inventors: Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Michael Eriksen, Keith Anthony Lauria, Richard Schliem, Erica Sampson, Eric Telfeyan
  • Patent number: 11415019
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 16, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Publication number: 20220243614
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 4, 2022
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria
  • Patent number: 11371385
    Abstract: A machine is cleaned by directing a foam detergent into the machine to remove contaminants from inside the machine. An effluent portion of the foam detergent exits from the machine with some of the contaminants. One or more of a turbidity, a salinity, an amount of total dissolved solids, or a concentration the contaminants in the effluent is measured. A cleaning time period during which the foam detergent is to be directed into the machine is determined based on the turbidity, the salinity, the amount of total dissolved solids, and/or the contaminant concentration that is measured from the effluent. The foam detergent continues to be directed into the machine during the cleaning time period, and the flow of the foam detergent into the machine is terminated on expiration of the time period.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Bernard Patrick Bewlay, Michael Eriksen, Keith Anthony Lauria, Richard Schliem, Erica Sampson, Eric Telfeyan
  • Patent number: 11371425
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang
  • Patent number: 11286808
    Abstract: System for selectively contacting a cleaning composition with a surface of a turbine engine component is presented. The system includes a cleaning apparatus and a manifold assembly. The cleaning apparatus includes an upper portion and a lower portion defining a cleaning chamber configured to allow selective contact between the cleaning composition and a surface of the first portion of the turbine engine component. The upper portion includes a plurality of fill holes in fluid communication with the cleaning chamber, and the lower portion includes a plurality of drain holes in fluid communication with the cleaning chamber. The manifold assembly is configured to selectively circulate the cleaning composition from a reservoir to the cleaning chamber via the plurality of fill holes, and recirculate the cleaning composition from the cleaning chamber to the reservoir via the plurality of drain holes. Methods for selectively cleaning a turbine engine component is also presented.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: March 29, 2022
    Assignee: General Electric Company
    Inventors: Nicole Jessica Tibbetts, Andrew James Jenkins, Bernard Patrick Bewlay, Evan Jarrett Dolley, John Watt, Christopher Perrett, Vincent Gerard Lauria
  • Patent number: 11286849
    Abstract: A cleaning system and method use an ultrasound probe, a coupling mechanism, and a controller to clean equipment of a vehicle system. The ultrasound probe enters into an engine. The ultrasound probe emits ultrasound pulses and the coupling mechanism provides an ultrasound coupling medium between the ultrasound probe and one or more components of the engine. The controller drives the ultrasound probe to deliver the ultrasound pulse through the coupling medium to a surface of the one or more components of the engine. The ultrasound probe delivers the ultrasound pulse to remove deposits from the one or more components of the engine.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: March 29, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bernard Patrick Bewlay, Waseem Ibrahim Faidi, Peter William Lorraine, Mohamed Ahmed Ali, Siavash Yazdanfar, Ying Fan, Edward James Nieters, David Mills, Nicole Jessica Tibbetts, Jr.
  • Publication number: 20220090537
    Abstract: Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Byron Andrew Pritchard, JR., Erica Elizabeth Sampson, William Francis Navojosky, Keith Anthony Lauria, Nicole Jessica Tibbetts, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Michael Robert Millhaem, Gongguan Wang
  • Publication number: 20220090516
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: April 1, 2021
    Publication date: March 24, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham