Patents by Inventor Nicole Lasiuk

Nicole Lasiuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7808109
    Abstract: An electrically conductive material coated with a plurality of layers, includes a metal or metal alloy substrate; a barrier layer deposited on said substrate effective to inhibit diffusion of constituents of said substrate to said plurality of layers; a sacrificial layer deposited on said barrier layer effective to form intermetallic compounds with tin; a low resistivity oxide metal layer deposited on said sacrificial layer; and an outermost layer of tin or a tin-base alloy directly deposited on said low resistivity oxide metal layer.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: October 5, 2010
    Assignee: GBC Metals, L.L.C.
    Inventors: Szuchain F. Chen, Nicole A. Lasiuk, John E. Gerfen, Peter R. Robinson, Abid A. Khan
  • Publication number: 20090017327
    Abstract: A coated electrically conductive substrate has particular utility where there are multiple closely spaced leads and tin whiskers constitute a potential short circuit. Such substrates include leadframes, terminal pins and circuit traces such as on printed circuit boards and flexible circuits. This electrically conductive substrate has a plurality of leads separated by a distance capable of bridging by a tin whisker, a silver or silver-base alloy layer coating at least one surface of at least one of the plurality of leads, and a fine grain tin or tin-base alloy layer directly coating said silver layer. An alternative coated electrically conductive substrate has particular utility where debris from fretting wear may oxidize and increase electrical resistivity, such an in a connector assembly. This electrically conductive substrate has a barrier layer deposited on the substrate that is effective to inhibit diffusion of constituents the substrate into a plurality of subsequently deposited layers.
    Type: Application
    Filed: June 24, 2008
    Publication date: January 15, 2009
    Inventors: Szuchain F. Chen, Nicole A. Lasiuk, John E. Gerfen, Peter W. Robinson, Abid A. Khan
  • Patent number: 7391116
    Abstract: A coated electrically conductive substrate has particular utility where there are multiple closely spaced leads and tin whiskers constitute a potential short circuit. This electrically conductive substrate has a plurality of leads separated by a distance capable of bridging by a tin whisker, a silver or silver-base alloy layer coating at least one surface of at least one of the plurality of leads, and a fine grain tin or tin-base alloy layer directly coating said silver layer. An alternative coated electrically conductive substrate has utility where debris from fretting wear may increase electrical resistivity. This electrically conductive substrate has a barrier layer deposited on the substrate that is effective to inhibit diffusion of the substrate into a subsequently deposited layers, which include a sacrificial layer deposited on the barrier layer that is effective to form intermetallic compounds with tin, and a low resistivity oxide metal layer deposited on the sacrificial layer.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: June 24, 2008
    Assignee: GBC Metals, LLC
    Inventors: Szuchain F. Chen, Nicole A. Lasiuk, John E. Gerfen, Peter W. Robinson, Abid A. Khan
  • Publication number: 20050106408
    Abstract: A coated electrically conductive substrate has particular utility where there are multiple closely spaced leads and tin whiskers constitute a potential short circuit. Such substrates include leadframes, terminal pins and circuit traces such as on printed circuit boards and flexible circuits. This electrically conductive substrate has a plurality of leads separated by a distance capable of bridging by a tin whisker, a silver or silver-base alloy layer coating at least one surface of at least one of the plurality of leads, and a fine grain tin or tin-base alloy layer directly coating said silver layer. An alternative coated electrically conductive substrate has particular utility where debris from fretting wear may oxidize and increase electrical resistivity, such an in a connector assembly. This electrically conductive substrate has a barrier layer deposited on the substrate that is effective to inhibit diffusion of constituents the substrate into a plurality of subsequently deposited layers.
    Type: Application
    Filed: October 12, 2004
    Publication date: May 19, 2005
    Inventors: Szuchain Chen, Nicole Lasiuk, John Gerfen, Peter Robinson, Abid Khan