Patents by Inventor Nicole Lindenmann

Nicole Lindenmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11630394
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: April 18, 2023
    Assignee: Karlsruhe Institute of Technology
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Publication number: 20220350239
    Abstract: Method (and apparatus) for producing a 3D target structure in lithographic material. Focus region of a laser writing beam travels through a scanning manifold through the lithographic material. In the focus region of the laser writing beam, an exposure dose is irradiated into the lithographic material, and a structure region is locally defined. At least one exposure data set which represents a local exposure dose for the scan manifold as a function of location is determined. A structure which approximates the target structure is defined based on at least one exposure data set. This structure is analyzed and at least one analysis data set which represents the analyzed structure is determined. Deviation data set which represents deviations of the already defined structure from the target structure is determined. At least one correction exposure data set is determined. Correction structure based on the at least one correction exposure data set is defined.
    Type: Application
    Filed: April 4, 2022
    Publication date: November 3, 2022
    Applicant: Nanoscribe Holding GmbH
    Inventors: Nicole LINDENMANN, Matthias BLAICHER, Jörg HOFFMANN
  • Publication number: 20210405537
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Patent number: 11179883
    Abstract: A system, computer program product and method for producing a three-dimensional overall structure by means of laser lithography, the overall structure being approximated by at least one partial structure, wherein, for the purposes of writing the partial structure, an exposure dose is radiated into the lithography material in a focal region of a laser writing beam while exploiting multi-photon absorption. Here, in the partial structure, the exposure dose in those edge portions that immediately adjoin an external surface of the overall structure to be produced is modified in comparison with the remaining partial structure.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 23, 2021
    Assignee: Nanoscribe Holding GmbH
    Inventors: Yann Tanguy, Nicole Lindenmann
  • Patent number: 11143966
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 12, 2021
    Assignee: Karlsruhe Institute of Technology
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Publication number: 20200047408
    Abstract: A system, computer program product and method for producing a three-dimensional overall structure by means of laser lithography, the overall structure being approximated by at least one partial structure, wherein, for the purposes of writing the partial structure, an exposure dose is radiated into the lithography material in a focal region of a laser writing beam while exploiting multi-photon absorption. Here, in the partial structure, the exposure dose in those edge portions that immediately adjoin an external surface of the overall structure to be produced is modified in comparison with the remaining partial structure.
    Type: Application
    Filed: February 7, 2018
    Publication date: February 13, 2020
    Applicant: Nanoscribe GmbH
    Inventors: Yann TANGUY, Nicole Lindenmann
  • Patent number: 10343332
    Abstract: The present invention provides a process for producing an optical waveguide (20) more particularly for integrated photonic systems. This process comprises provision of polymerizable material; local polymerization of the polymerizable material to produce a multiplicity of polymerized structural elements (14); removal of the unpolymerized regions of the polymerizable material; and heating of the polymerized material more particularly above the glass transition temperature thereof in order to fuse the multiplicity of polymerized structural elements (14) together to form the optical waveguide (20).
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: July 9, 2019
    Assignee: Karlsruher Institut Fur Technologie
    Inventors: Timo Mappes, Sebastian Köber, Nicole Lindenmann, Christian Koos
  • Publication number: 20190163067
    Abstract: Disclosed is a method for lithographically producing a target structure on a non-planar initial structure by exposing a photoresist by means of a lithography beam. In the inventive method, the topography of a surface of the non-planar initial structure is detected. A test parameter for the lithography beam is used and an interaction of the lithography beam with the initial structure and the resultant change in the lithography beam and/or the target structure to be produced are determined. A correction parameter for the lithography beam is determined such that the change in the lithography beam and/or the target structure to be produced that is caused by the interaction of the lithography beam with the initial structure is reduced. The desired target structure on the initial structure is produced by exposing the photoresist by means of the lithography beam using the correction parameter.
    Type: Application
    Filed: January 31, 2019
    Publication date: May 30, 2019
    Inventors: Christian Koos, Tobias Hoose, Philipp Dietrich, Matthias Blaicher, Maria Laura Gödecke, Nicole Lindenmann
  • Publication number: 20160046070
    Abstract: The present invention provides a process for producing an optical waveguide (20) more particularly for integrated photonic systems. This process comprises provision of polymerizable material; local polymerization of the polymerizable material to produce a multiplicity of polymerized structural elements (14); removal of the unpolymerized regions of the polymerizable material; and heating of the polymerized material more particularly above the glass transition temperature thereof in order to fuse the multiplicity of polymerized structural elements (14) together to form the optical waveguide (20).
    Type: Application
    Filed: March 28, 2014
    Publication date: February 18, 2016
    Applicant: Karlsruher Institut fur Technologie
    Inventors: Timo Mappes, Sebastian Köber, Nicole Lindenmann, Christian Koos
  • Patent number: 9034222
    Abstract: A method for making optical connections with optical waveguides includes mounting the optical waveguides or a device comprising the optical waveguides, on a component carrier. A partial region of the optical waveguides is embedded in a volume of resist material. Positions of the optical waveguides to be connected are detected with reference to a coordinate system using a measuring system. Favorable, three-dimensional geometries are determined for optical waveguide structures for connecting the optical waveguides to each other at predetermined connecting locations and the optical waveguide structure geometries are converted to a machine-readable dataset. The optical waveguide geometries in the volume of the resist material are three-dimensionally structured using a direct-writing lithography device operating on the basis of the machine-readable dataset.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 19, 2015
    Assignee: KARLSRUHE INSTITUT FUER TECHNOLOGIE
    Inventors: Christian Koos, Wolfgang Freude, Nicole Lindenmann, Juerg Leuthold
  • Patent number: 8903205
    Abstract: An optical arrangement includes a plurality of planar substrates with at least one planar integrated optical waveguide on each planar substrate. At least one optical waveguide structure has at least one end connected via an optical connecting structure to one of the planar integrated optical waveguides. The optical waveguide structure is positioned at least partly outside the integration plane for the planar integrated optical waveguide and a refractive index contrast between a core region and a cladding region of the optical waveguide structure is at least 0.01.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: December 2, 2014
    Assignee: Karlsruhe Institute of Technology (KIT)
    Inventors: Christian Koos, Wolfgang Freude, Nicole Lindenmann, Juerg Leuthold
  • Publication number: 20130223788
    Abstract: An optical arrangement includes a plurality of planar substrates with at least one planar integrated optical waveguide on each planar substrate. At least one optical waveguide structure has at least one end connected via an optical connecting structure to one of the planar integrated optical waveguides. The optical waveguide structure is positioned at least partly outside the integration plane for the planar integrated optical waveguide and a refractive index contrast between a core region and a cladding region of the optical waveguide structure is at least 0.01.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: Karlsruher Institut fuer Technologie
    Inventors: Christian Koos, Wolfgang Freude, Nicole Lindenmann, Juerg Leuthold
  • Publication number: 20130221550
    Abstract: A method for making optical connections with optical waveguides includes mounting the optical waveguides or a device comprising the optical waveguides, on a component carrier. A partial region of the optical waveguides is embedded in a volume of resist material. Positions of the optical waveguides to be connected are detected with reference to a coordinate system using a measuring system. Favorable, three-dimensional geometries are determined for optical waveguide structures for connecting the optical waveguides to each other at predetermined connecting locations and the optical waveguide structure geometries are converted to a machine-readable dataset. The optical waveguide geometries in the volume of the resist material are three-dimensionally structured using a direct-writing lithography device operating on the basis of the machine-readable dataset.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: Karlsruher Institut fuer Technologie
    Inventors: Christian Koos, Wolfgang Freude, Nicole Lindenmann, Juerg Leuthold