Patents by Inventor Nicole M. Wells

Nicole M. Wells has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160259480
    Abstract: Disclosed herein are methods and systems for providing haptic output and audio output on computing devices using the same haptic device and methods for calibrating the same. To produce the haptic and audio output, the computing device receives a profile of a desired output waveform that is to be provided by the haptic device. Using the desired output waveform, an input waveform is generated. Once the input waveform that will produce the desired output waveform is generated, the input waveform may be calibrated to account for various structural components of the haptic device and may also be combined with an audio waveform. The input waveform is then provided to the haptic device.
    Type: Application
    Filed: February 18, 2016
    Publication date: September 8, 2016
    Inventors: Peteris K. Augenbergs, Marc J. Piche, Vinay Chawda, Nicole M. Wells, Scott J. McEuen, Curtis P. Wiederhold, Jonah A. Harley, Wayne C. Westerman, Jeffrey T. Bernstein, Brett W. Degner, Paul Briant, Thomas Wedlick
  • Publication number: 20160259471
    Abstract: An electronic device includes a touch-sensitive surface. The electronic device includes one or more sensors to detect intensity of contacts with the touch-sensitive surface. The device detects a first touch input on the touch-sensitive surface, and, in response to detecting the first touch input on the touch-sensitive surface, determines a first intensity applied by the first touch input on the touch-sensitive surface. The device identifies a first intensity model identifier from a plurality of predefined intensity model identifiers, and, in accordance with the first intensity applied by the first touch input on the touch-sensitive surface and one or more thresholds associated with the first intensity model identifier, determines a first touch characterization parameter. Subsequent to determining the first touch characterization parameter, the device sends first touch information to the first software application.
    Type: Application
    Filed: September 29, 2015
    Publication date: September 8, 2016
    Inventors: Raleigh J. Ledet, Ryan S. Dixon, Nils T. Beck, Nicole M. Wells
  • Publication number: 20160259470
    Abstract: An electronic device detects a first touch input on a first touch region of a touch-sensitive surface, and identifies a first intensity model identifier associated with the first touch region. In response to detecting the first touch input, the device determines a first intensity of the first touch input on the first touch region; determines a first touch characterization parameter; and, subsequently sends to a first software application the first touch characterization parameter. The device also detects a second touch input on a second touch region of the touch-sensitive surface, and identifies a second intensity model identifier associated with the second touch region. In response to detecting the second touch input, the device determines a second intensity of the second touch input on the second touch region; determines a second touch characterization parameter; and, subsequently sends to the first software application the second touch characterization parameter.
    Type: Application
    Filed: September 28, 2015
    Publication date: September 8, 2016
    Inventors: Raleigh J. Ledet, Ryan S. Dixon, Nils T. Beck, Nicole M. Wells
  • Publication number: 20160259472
    Abstract: An electronic device displays a user interface that includes a first display region and a second display region. The device detects a first intensity of a touch input at a first location on a touch-sensitive surface that corresponds to the first display region; detects a movement of the touch input to a second location on the touch-sensitive surface that corresponds to the second display region; after detecting the movement, detects a second intensity of the touch input at the second location; and, in response, in accordance with a determination that the first intensity does not satisfy a first intensity threshold, processes the second intensity using one or more intensity thresholds associated with the second display region; and, in accordance with a determination that the first intensity satisfies the first intensity threshold, processes the second intensity using one or more intensity thresholds associated with the first display region.
    Type: Application
    Filed: September 29, 2015
    Publication date: September 8, 2016
    Inventors: Raleigh J. Ledet, Ryan S. Dixon, Nils T. Beck, Nicole M. Wells
  • Publication number: 20160259536
    Abstract: An electronic device displays a settings user interface that includes one or more control objects. The settings user interface is configured to adjust operations of the device that use one or more sensors that detect intensity of contacts with a touch-sensitive surface, and/or one or more tactile output generators. The device detects an input for a first control object of the one or more control objects; and, in accordance with the detected input for the first control object, changes the second intensity threshold and the second tactile output. The device provides a first tactile output in response to detecting that an intensity of a contact on a touch-sensitive surface increases above a first intensity threshold, and provides a second tactile output in response to detecting that an intensity of a contact on the touch-sensitive surface increases above a second intensity threshold, distinct from the first intensity threshold.
    Type: Application
    Filed: September 28, 2015
    Publication date: September 8, 2016
    Inventors: Aram D. Kudurshian, Christopher P. Foss, Gary I. Butcher, Patrick L. Coffman, Jeffrey Traer Bernstein, Nicole M. Wells, Wayne C. Westerman